
Methods Ecol Evol. 2019;1–14.	 wileyonlinelibrary.com/journal/mee3�  |  1© 2019 The Authors. Methods in Ecology and 
Evolution © 2019 British Ecological Society

 

Received: 14 February 2018  |  Accepted: 1 March 2019
DOI: 10.1111/2041-210X.13178  

R E S E A R C H  A R T I C L E

Making the most of scarce data: Mapping soil gradients in data-
poor areas using species occurrence records

Gabriela Zuquim1  |   Juliana Stropp2  |   Gabriel M. Moulatlet1 |    
Jasper Van doninck1,3  |   Carlos A. Quesada4 |   Fernando O. G. Figueiredo5 |    
Flávia R. C. Costa5  |   Kalle Ruokolainen1,3 |   Hanna Tuomisto1

1Department of Biology, University of Turku, 
Turku, Finland
2Instituto de Ciências Biológicas e da 
Saúde, Universidade Federal de Alagoas, 
Maceió, Brazil
3Department of Geography and 
Geology, University of Turku, Turku, Finland
4Coordenação de Dinâmica 
Ambiental, Instituto Nacional de Pesquisas 
da Amazônia, Manaus, Brazil
5Coordenação de Biodiversidade, Instituto 
Nacional de Pesquisas da Amazônia, 
Manaus, Brazil

Correspondence
Gabriela Zuquim
Email: gabriela.zuquim@utu.fi

Present address
Gabriel M. Moulatlet,  Universidad Regional 
Amazónica IKIAM, Parroquia Muyuna, Tena, 
Napo, Ecuador.

Funding information
Conselho Nacional de Desenvolvimento 
Científico e Tecnológico; Ministério da 
Ciência e Tecnologia; Academy of Finland, 
Grant/Award Number: 273737; CNPq, 
Grant/Award Number: 152816/2016-0; 
University of Turku Graduate School

Handling Editor: Nigel Yoccoz

Abstract
1.	 Maps of environmental characteristics are needed to improve our understanding 
of species distributions and ecosystem dynamics. Despite the growing demand for 
digital environmental maps, scarcity of environmental field samples to be used as 
input data often constrains the accuracy of such maps, especially for soils.

2.	 We developed and tested a method that combines information on species–envi-
ronment associations and the spatial distribution of indicator species (as retrieved 
from repositories such as GBIF) to improve mapping accuracy of environmental 
variables.

3.	 Our approach includes: (a) Compile field data on the environmental variable of 
interest (direct environmental data) and documented occurrences of the species 
to be used as indicators; (b) define species optima for the environmental variable; 
(c) use georeferenced records of the indicator species to calculate species-based 
environmental values (indirect environmental data); (d) generate maps using direct 
and indirect environmental data as input data for interpolation; (e) validate the 
maps. We applied the method to map the concentration of exchangeable base 
cations in Amazonian soils using fern and lycophyte species as indicators.

4.	 Including soil values that had been indirectly estimated using indicator species 
represented a 12-fold increase in the number of input data points used for map-
ping. At the same time, map accuracy improved considerably: the correlation be-
tween mapped soil cation concentration estimates and field-measured values 
from an independent validation dataset increased from r = 0.48 to r = 0.71.

5.	 Knowledge on species–environment relationships can be useful for modelling 
ecologically relevant environmental variables in areas where species occurrence 
data are more readily available than direct environmental measurements. The 
method works even with haphazard species occurrence points obtained from 
public repositories such as GBIF and can be applied to other environmental vari-
ables and other indicator groups, provided that the environmental variable of in-
terest is relevant as a determinant of species occurrences in the indicator group. 
The Amazonian soil cation concentration maps produced (available at https://doi.
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1  | INTRODUC TION

Environmental maps are useful for a wide range of studies, from 
landscape evolution and dynamics to species distribution modelling, 
with implications for conservation planning (Guisan & Zimmermann, 
2000; Rylands, 1990). The reliability of the results of such stud-
ies depends to a large degree on the quality of available environ-
mental maps (Araújo & Guisan, 2006; Carneiro, Lima, Machado, 
& Magnusson, 2016; Dawson, Jackson, House, Prentice, & Mace, 
2011). For example, soils play a central role in shaping plant commu-
nities and constraining species distributions across scales (Phillips 
et al., 2003; Baldeck et al., 2012, Tuomisto et al. 1995, 2016), so 
thematically and spatially accurate soil maps are needed for many 
purposes. Even though considerable effort has been invested in 
producing digital soil maps that cover the entire world (Dijkshoorn, 
Huting, & Tempel, 2005; Hengl et al., 2017; Nachtergaele, van 
Velthuizen, Verelst, & Wiberg, 2012), in data-poor areas these maps 
still suffer from serious inaccuracies (Moulatlet et al., 2017).

One reason for map inaccuracy is that values in data-poor areas 
are estimated using spatial interpolation over large unsampled areas. 
Moreover, global digital soil maps are based on global models, al-
though data availability varies considerably among regions (Hengl 
et al., 2014). Because predictive models cannot be optimized for all 
regions at the same time (Grunwald, Thompson, & Boettinger, 2011), 
producing maps specifically for a smaller area of interest and finding 
novel ways to increase the density of input data points for that area 
can contribute greatly to improving modelling accuracy (Grunwald 
et al., 2011).

If direct measurements of an environmental variable are scarce, 
surrogates can be used to alleviate data paucity. In Europe, the use 
of indicator plant species to infer site conditions dates back to the 
1920s (Cajander, 1926; Ellenberg et al., 1992), and the general idea 
has been applied to distinguishing habitats or forest types also in 
Amazonia (Salovaara, Cárdenas, & Tuomisto, 2004; Tuomisto et al., 
2003; Tuomisto & Ruokolainen, 1994). Palaeoecologists use indi-
cator species (such as diatoms observed in sediment samples) to 
reconstruct past environmental conditions that cannot be directly 
measured (such as past pH in lakes) through calibration by weighted 
averaging (WA; Birks, 2003; ter Braak & Juggins, 1993). WA is based 
on the idea that the optimum value along a gradient for a species can 
be estimated as the abundance-weighted average of the environ-
mental variable values at the sites where the species occurs, which 
also corresponds to the peak of a species-abundance curve along 
that environmental gradient. Thus, the presence of a species in a 

certain site implies that the environmental variable value at that site 
is close to the species-specific optimum.

Following these principles, knowledge of soil associations of 
plant species can be used to infer soil conditions: once the optimum 
of a given species for the soil variable of interest is known, it can be 
used as an estimate of the soil variable at the sites where the spe-
cies occurs. The motivation for using indicator species stems from 
the fact that chemical analyses of soil samples are costly and, there-
fore, direct measurements of soil data are available from relatively 
few sites only. In contrast, taxonomical work is based on collecting 
plant specimens in as many sites as possible, and botanists tend to 
maximize the number of species collected (ter Steege, Haripersaud, 
Banki, & Schieving, 2011). The volume of georeferenced plant oc-
currence records available digitally through herbaria or other data 
repositories has increased dramatically, and so has our knowledge 
about species distributions (Lavoie, 2013). Consequently, localities 
with plant species records are usually much more numerous than 
localities with soil samples in any geographical area. The indicator 
species approach makes it possible to derive soil information for 
localities that have been sampled for plants but not soils, which 
substantially increases the number of points available as input data 
in soil mapping. Information on species optima along soil gradients 
is more difficult to obtain, but here we present such data for un-
derstorey ferns and lycophytes. Data for other plant groups, such 
as trees, may eventually become available through some of the 
standardized inventory efforts both in Amazonia (e.g. the Amazon 
Forest Inventory Network—RAINFOR, the Amazon Tree Diversity 
Network—ATDN, the Brazilian Program in Biodiversity—PPBio, 
and Forest Global Earth Observatory—ForestGEO) and elsewhere 
(Jürgens et al., 2012).

The use of understorey plants as indicators of soil proper-
ties has already been formally evaluated in Amazonia (Suominen, 
Ruokolainen, Tuomisto, Llerena, & Higgins, 2013; Zuquim et al., 
2014) and even applied at the landscape scale (Sirén, Tuomisto, & 
Navarrete, 2013). Here, we describe how field data containing both 
species occurrence and environmental data can be combined with 
georeferenced species occurrence records downloaded from the 
Internet to map an environmental variable of interest over an ex-
tensive, data-poor area. As an example, we map the concentration 
of exchangeable base cations in Amazonian soils using ferns and ly-
cophytes as indicator species. Soil properties are of interest because 
they are major factors determining ecosystem services, forest struc-
ture, carbon stocks and species distributions (Figueiredo et al., 2018; 
Quesada et al., 2010; Schaefer et al., 2008). Nevertheless, existing 

pangaea.de/10.1594/PANGAEA.879542) can be used as digital layers in species 
distribution and habitat modelling, and to guide conservation actions in Amazonia.
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soil maps covering Amazonia contain many problems, from spatial 
inaccuracies to failure to include variables that are relevant to many 
ecological questions (Moulatlet et al., 2017; Quesada et al., 2011). 
Our method can be applied to any environmental variables for which 
species affinities are quantifiable and sufficiently strong. Details 
such as spatial resolution and extent of the mapping, interpolation 
method and possible corrections for spatial bias can be adjusted to 
match specific interests.

2  | MATERIAL S AND METHODS

2.1 | General framework

2.1.1 | Step 1: Compile available data on the 
environmental variable of interest and the potential 
indicator group

The first step is to compile as much data as possible on the environ-
mental variable to be mapped and on the potential set of species 
to be used as indicators. Appropriate data may include quantita-
tive plot data as well as data from other sources, such as public 
data repositories. Plot data often contain both environmental and 
species information for the same locations, and are, therefore, es-
sential to determine species–environment relationships in step 2. 
Data obtained from online data portals typically provide informa-
tion on either environmental variables (e.g. Global Soil Information 
Facility—GSIF) or species occurrence (e.g. Global Biodiversity 
Information Facility—GBIF, Specieslink, or Botanical Information 
Ecology Network—BIEN), but not both. These data can be used in 
step 3, as they typically represent both a wider geographical cov-
erage and many more sites than the plot data do. Since data from 
data portals usually contain many identification and georeferencing 
errors (Maldonado et al., 2015), data cleaning is important to ensure 
adequate data quality.

2.1.2 | Step 2: Determine environmental optima for 
all species and verify their utility as indicators

The second step is to calculate the species-specific optima for the 
environmental variable of interest. The optimum value is obtained 
using data from locations for which both species and environmental 
data are available (plot data). Once the optima have been calculated, 
they can be used to estimate the environmental variable values at 
new sites with known species composition. Various transfer func-
tions can be used for this purpose; here we use the Weighted 
Averaging calibration method (WA; ter Braak & van Dam, 1989). 
Transfer functions are widely used by palaeoecologists to infer past 
environmental conditions from fossil and extant species records, 
but here we apply them to predict current conditions. Care should 
be taken to ensure that a sufficient number of observations of the 
indicator species are used to calculate the species-specific optima 
(Zuquim et al., 2014). This will minimize the overall impact of con-
founding factors, such as other environmental variables or local 

species interactions, on the species-specific optimum values. In WA, 
species occurrence optima along the environmental gradient are cal-
culated as the average (for presence–absence data) or weighted av-
erage (for abundance data, using species abundances as weights) of 
the environmental variable values in those plots where the species 
occurred (eq. 4 in ter Braak & van Dam, 1989). Tolerance is calculated 
as the root-mean squared error (RMSE) between the species opti-
mum and the observed environmental variable values corresponding 
to each species observation (eq. 7 in ter Braak & van Dam, 1989). 
Due to the repeated taking of means, WA suffers from the tendency 
of the predicted values to be biased towards the overall mean value 
of the modelled variable (i.e. small values get overestimated and 
large values underestimated). To prevent this, several deshrinking 
methods were developed to restore the original variable range (ter 
Braak & Juggins, 1993).

Comparing the predicted environmental variable values with 
observed values (e.g. using leave-one-out cross-validation) gives 
a measure of the utility of the chosen indicator species group for 
the variable of interest. It is possible that prediction accuracy is 
adversely affected by generalist species. Making a second set of 
predictions such that species are downweighted in proportion to 
their tolerance can be used to assess the magnitude of this effect. If 
tolerance-weighted predictions are clearly more accurate than un-
weighted predictions, the species with broad tolerances (= the gen-
eralists) can be excluded from the final analyses.

2.1.3 | Step 3: Obtain species-derived estimates and 
combine with direct environmental measurements

In the third step, every geo-referenced occurrence location of a 
species (such as a record found in a public portal) is assigned the 
WA-estimated species environmental optimum value. Then the 
geo-referenced locations are rasterized to the desired grid cell 
size, and the average of the optima within a given grid cell is used 
as the estimate of the environmental variable value for that grid 
cell. Averaging provides more accurate estimates of the environ-
mental variable than the individual species optima would. It also 
reduces spatial bias in sampling, as each grid cell is assigned ex-
actly one environmental variable value no matter how many plant 
collections were available for it. The species-derived environmen-
tal data points thus obtained are then combined with the direct 
environmental measurements into a single dataset to be used in 
step 4.

2.1.4 | Step 4: Generate maps by interpolating 
between data points

The fourth step is to submit all the measured (direct) and species-
derived (indirect) environmental data points as input data to a proce-
dure that interpolates the values and produces an environmental map 
covering the whole area of interest. Various interpolation methods are 
available for this purpose; here we focus on Kriging but also provide 
results obtained with inverse distance weighting (IDW) for comparison.
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2.1.5 | Step 5: Validate the maps

Finally, the obtained maps can be validated. Their accuracy can be 
tested by using an external validation dataset, or by splitting the 
existing data into a training set and a test set for cross-validation 
(Chatfield, 1995).

2.2 | Applied case: soil cation concentration 
map for Amazonia based on occurrences of 
ferns and lycophytes

We applied the approach outlined above to create maps of 
exchangeable base cations soil concentration in Amazonia 
(Ca + Mg + K measured in cmol(+)/kg; henceforth, soil cation con-
centration), using ferns and lycophytes as the indicator species 
group. We used ferns and lycophytes because earlier ecological 
studies provide a solid basis for the calculation of their soil cation 
concentration optima (Sirén et al., 2013; Tuomisto, Ruokolainen, 
& Yli-Halla, 2003; Tuomisto, Zuquim, & Cárdenas, 2014; Tuomisto 
et al., 2016; Zuquim et al., 2014).

2.2.1 | Step 1: Compile available data on soil 
cation concentration and occurrences of ferns and 
lycophytes in Amazonia

Points with both species and soil data (Plot data)
We compiled data from 1,353 quantitative fern and lycophyte in-
ventory plots across Amazonia that also provided locally measured 
soil cation concentration (Figure 1a). Of these plots, 371 are part of 
the Brazilian Biodiversity Research Program database (PPBio) and 
982 are part of the University of Turku Amazon Research Team da-
tabase (UTU). The PPBio plots were 2 m wide and 250 m long and 
placed along terrain isoclines, following the guidelines of RAPELD 
(Portuguese acronym for Rapid Assessment—Long-term Ecological 
Research; Magnusson et al., 2005). The UTU plots were 150 m × 5 m 
in size and followed a predefined compass bearing. In every plot, 
ferns and lycophytes were inventoried and soils were collected and 
analysed as detailed in (Moulatlet et al., 2017).

Points with species data only (Herbarium data)
We searched for occurrence records within Amazonia (as delimited 
by Eva & Huber, 2005) for those fern and lycophyte species that 
were present in the plot data. Species occurrence records were 
downloaded from the Global Biodiversity Information Facility (GBIF; 
gbif.org) and SpeciesLink (http://www.splink.org.br) in November 
2016 and both datasets were combined. Duplicate records of the 
same species with the same latitude and longitude were excluded. 
We also excluded species records with any of the following issues: 
(a) coordinates (in decimal degrees) were given with a precision of 
less than three decimal places; (b) coordinates landed in a different 
country than that indicated in the ‘country’ field of the specimen 
metadata; (c) coordinates coincided with the centre of a city or major 
village (places classified as ‘administrative level 2’ or ‘populated 

places’ in the GEONAMES database); (d) the record came from the 
UTU or PPBio plots and had already been used in the species opti-
mum calculations. These four steps of data filtering removed 2,667 
species occurrence records out of 33,604 and left 30,937 for the 
analyses (Figure 1b).

Points with soil data only (Public repositories)
Values of soil cation concentration were retrieved from the 
Harmonized World Soil Database v1.2 (HWSD) (Nachtergaele et al., 
2012) and a Brazilian national database (BND) (Cooper, Mendes, 
Silva, & Sparovek, 2005). We used the data from those 347 soil 
samples that had geographic coordinates within Amazonia and had 
been collected at a maximum depth of no more than 30 cm. In addi-
tion, we used the soil cation concentration information from around 
2,300 soil samples from the UTU and PPBio databases. In the PPBio 
plots, six surface soil samples (the top 5 cm of the mineral soil) were 
taken at every 50 m and bulked to obtain a single composite sam-
ple. The samples were analysed in the Soil Thematic Laboratory of 
Brazilian National Institute for Amazonian Research (LTSP-INPA) 
using the Mehlich I protocol (KCl 1 Normality method; Donagena, 
Campos, Calderano, Teixera, & Viana, 2011). Each UTU plot was rep-
resented by one composite surface soil sample (top 5 cm of the min-
eral soil) that consisted of five subsamples collected within an area 
of about 5 m × 5 m. These samples were analysed at MTT Agrifood 
Research (Jokioinen, Finland) using extraction in 1 M ammonium ac-
etate (van Reeuwijk, 1993). Details of the soil sampling can be found 
in (Moulatlet et al., 2017).

2.2.2 | Step 2: Determine environmental optima for 
all fern and lycophyte species and verify their utility 
as indicators

We used the Weighted Averaging calibration method with 
monotonic curvilinear deshrinking to calculate optima and toler-
ances along the log-transformed (base 10) soil cation concen-
tration gradient for each of the 282 fern and lycophyte species 
observed in the plots. The nonlinear deshrinking procedure ap-
plied is similar to the linear deshrinking described in eq. 5 of 
ter Braak and van Dam (1989). The curvilinear approach avoids 
nonlinear distortions such as edge effects (ter Braak & Juggins, 
1993) and was developed by fitting a smooth monotonic func-
tion to the inverse deshrinking as implemented in the r package 
‘rioja’ (Juggins, 2017).

To confirm that the species were good predictors, we estimated 
soil cation concentrations for the PPBio and UTU plots and com-
pared the estimates with the observed values using leave-one-out 
cross-validation. RMSE and the coefficient of determination (R2)  
between the predicted and the laboratory-analysed soil cation 
concentrations were used to quantify prediction accuracy. To test 
whether species with a wide tolerance decreased prediction accu-
racy, we repeated the WA calculations using the inverse of species 
tolerance as an additional weight. All calculations were carried out 
separately for presence–absence and abundance data.

http://www.gbif.org
http://www.splink.org.br
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Some closely related species are difficult to reliably distinguish 
in the field, and such complexes were lumped before calculating 
species optima. For simplicity, we make no distinction between 
these complexes and what are thought to be real species in the 
text. Calculations of species optima were done using the r pack-
age ‘rioja’ (Juggins, 2017). The analysis code is available at https://
github.com/gabizuquim/paper_fern-soil_map/blob/master/
spp_optima.R.

2.2.3 | Step 3: Obtain species-derived soil cation 
concentration estimates and combine with direct soil 
measurements

Each geo-referenced location of a species occurrence obtained 
from GBIF and SpeciesLink was assigned the optimum soil value 
of the corresponding species. We then aggregated the points to 
grid cells of 1 arcmin (~2 km at the equator) and used the average 
value per cell as a plant-derived (indirect) soil cation concentra-
tion value. Similarly, we averaged for each grid cell the directly 
measured soil data obtained from the PPBio and UTU plots and 
the HWSD and BND databases. A third soil dataset was obtained 
by combining the indirect and direct soil values; an average value 

was used if both indirect and direct soil data were available for the 
same grid cell. Each of the three soil datasets (indirect data only, 
direct data only, both combined) was used separately as input 
data in step 4.

2.2.4 | Step 4: Generate maps by interpolating 
between data points

A raster map of estimated soil cation concentration values covering 
all Amazonia was obtained by interpolation at the spatial resolution 
of 6 arcmin (~11 km at the equator). Even though there are general 
spatial trends in soil cation concentration across Amazonia (Quesada 
et al., 2010) that divides into major geochemical regions, abrupt 
changes in soil characteristics have also been documented (e.g. 
Higgins et al., 2011; Tuomisto et al., 2016). This means the stationar-
ity assumption of simple Kriging does not hold. Therefore, we used 
ordinary Kriging, where parameters of the semi-variogram (model 
type, nugget, partial sill and range) were estimated by visual inspec-
tion and then improved by an automatic fitted variogram function. 
An associated layer indicating the Kriging standard deviation was 
also generated to illustrate the uncertainty associated with the inter-
polated soil cation concentration values. In order to evaluate to what 

F IGURE  1 Distribution of data points used to produce and test estimates of exchangeable base cation concentration in surface soil 
across Amazonia. (a) Soil sample points from our own database (UTU+PPBio) and from external databases used as input data (HWSD+BND 
- Harmonized World Soil Database +Brazilian National Database) and as validation data (RAINFOR - Amazon Forest Inventory Network). 
(b) Fern and lycophyte species occurrence records retrieved from the Global Biodiversity Information Facility and SpeciesLink data portals 
(GBIF+SpLink). Analyses were done over all Amazonia as defined by Eva & Huber (2005; black line, white polygon) and over a subset limited 
by the wetlands map of Hess et al. (2015; orange line, pale green polygon)
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degree the results depend on the selected interpolation method, we 
performed the spatial interpolations also using IDW with a weighting 
power of 2.

Both spatial interpolation methods are implemented in the 
r package (R Core Team, 2017) ‘gstat’ (Pebesma & Graeler, 2017). 
Automated fitting was carried out using the fit.variogram function. 
The codes for averaging the fern and lycophyte species optima 
values and Kriging are available at https://github.com/gabizuquim/
paper_fern-soil_map/blob/master/script_krig_share.R.

To visualize the effect of input data on the final maps, we re-
peated the interpolations using different subsets of the available 
point data. These were as follows: (a) direct soil measurements only 
(1,033 grid cells with soil samples obtained from HWSD, BND, UTU 
and PPBio datasets); (b) plant-derived (indirect) soil estimates only 
(6,041 grid cells with species occurrence data obtained from GBIF 
and SpeciesLink); (c) direct and plant-derived soil data together 
(6,945 grid cells); and (d) direct and plant-derived soil data together, 
but analysis limited to the area covered by a recent wetlands map 
(Hess et al., 2015). The data points in subset 4 were first classified 
into terra-firme (non-inundated uplands) versus wetlands, and the 
interpolation was done separately for each landscape type. The 
wetlands map covers about 87% of Amazonia as defined by (Eva & 
Huber, 2005) (Figure 1).

2.2.5 | Step 5: Validate the maps

To evaluate the accuracy of the maps, we obtained external valida-
tion data on soil cation concentration taken at a maximum depth 
of 30 cm from 194 soil samples of the Amazon Forest Inventory 
Network (RAINFOR; http://www.rainfor.org) (Figure 1a). Laboratory 
methods applied by RAINFOR are described by Quesada et al. 
(2010).

We used the RAINFOR soil sample coordinates to match mea-
sured exchangeable cation concentrations with the estimated 
values from each of our maps and assessed the accuracy of the 
estimates by calculating the Pearson correlation between the es-
timated and measured values. Even though the validation dataset 
is spatially clustered, we expect independently collected valida-
tion data to be less prone to bias than cross-validation approaches 
would be, since the estimates used in validation are model-free 
(Brus, Kempen, & Heuvelink, 2011). Cross-validation also often 
over-estimates mapping accuracy (Chatfield, 1995).

For comparison, we also obtained the map of soil cation exchange 
capacity (CEC) values at maximum depth of 30 cm made available 
by the SoilGrids project (Hengl et al., 2017); www.soilgrids.org, ac-
cessed in December 2016) and calculated the correlation with CEC 
values from SoilGrids and the exchangeable cation concentrations 
from the RAINFOR soil data. CEC is a soil variable that is commonly 
used in ecological studies (Figueiredo et al., 2018; Levis et al., 2017; 
McMichael et al., 2014).

Next, we evaluated how much the pixel-by-pixel patterns in the 
maps depend on the input data and interpolation technique. To do 
this, we correlated all the maps generated by Kriging with each other 
and with the CEC map, as well as with the maps based on the same 
input data as the Kriged map but applying IDW for interpolation.

Finally, we took the map that performed best (= with higher 
correlation between mapped and observed values in the validation 
dataset) and assessed how its errors and uncertainties were related 
to the heterogeneity and distribution of input points. We extracted 
the Kriging standard deviation and the mapped cation concentration 
values for each point in the validation dataset and quantified the 
error of the map as the absolute difference between the mapped and 
measured soil values. We obtained the number of input points and 
the standard deviation of the soil values within buffers of 6 arcmin 

F IGURE  2 Fern and lycophyte species 
optima (black dots) and tolerances 
(grey horizontal bars; based on root 
mean squared error) for soil cation 
concentration (exchangeable Ca+Mg+K) 
as calculated using data from 1,353 
inventory plots in lowland Amazonia. 
The species are ranked by their cation 
optimum.
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(~11 km radius) around the location of the validation samples. We 
further accessed uncertainty in structurally random by obtaining the 
number of sampling points and standard deviations in one point or 
buffer randomly chosen inside each cell of a 20 × 20 arcmin grid to 
Amazonia. This assures that the uncertainty assessment has covered 
the whole Amazonia and was not biased by the locations of the val-
idation sampling points.

3  | RESULTS

In the 1,353 plots across Amazonia, we recorded 63,104 individuals 
of ferns and lycophytes belonging to 268 species. Species that were 
confused in the field were lumped before the analyses, so these 
were based on 245 taxa (species, species complexes or genera; all 
referred to as species for simplicity). Field data covered a long gra-
dient of exchangeable base cation concentration (median = 0.37, 
mean = 4.11, range = 0.03–54.67 cmol(+)/kg), and species optima 
were well spread along this gradient (Figure 2). The cation concen-
tration optima based on species presence–absence and abundance 
data were highly correlated (r = 0.98; note that all correlations and 
other results reported here were obtained using the log-transformed 
values). The accuracy of soil cation concentration predictions based 
on species composition was also high (R2 = 0.74–0.85) regardless 
of the input data type (presence–absence or abundance data) used 
in the estimations (Table 1). Moreover, it made little difference 
whether species tolerances were used as inverse weights in the WA 
calculations or not. This indicates that species with broad tolerance 
did not substantially decrease the accuracy of the estimated soil 
values. Since prediction accuracy was high overall, and taking spe-
cies tolerances into account had little effect, we retained all species 
that had been observed in the plots in the indicator species pool 
to be used when predicting soil cation concentration for the final 
mapping exercise.

There were big differences among the maps depending on which 
input dataset was used. Soil cation concentration values extracted 

from the maps that were based on the combined direct and plant-
derived soil data (soil data subset 3 as defined in Step 3 above) and 
interpolated using Kriging had the highest correlations with the mea-
sured values in the validation dataset (r = 0.71). The map based on 
species-derived soil data only (subset 2) performed slightly worse 
(r = 0.68 and 0.61 for Kriging and IDW, respectively) and the map 
based on direct soil data only (subset 1) performed clearly worse 
(r = 0.48 and 0.52 for Kriging and IDW, respectively). The lowest cor-
relations with exchangeable soil cation concentration were obtained 
for the CEC values of the SoilGrids map (r = 0.30).

In all interpolated maps (Figure 3a,c,e,g), most of the cation-rich 
soils were predicted to be in western and southern Amazonia and 
most of the cation-poor soils in central Amazonia. However, large 
areas especially in eastern Amazonia had unstable model outputs 
that predicted either cation-rich or cation-poor soils, depending on 
the input data. Soil cation concentration maps using direct and plant-
derived soil data together were more strongly correlated with the 
maps using only plant-derived estimates (r = 0.90–0.92) than with 
the maps using only direct soil measurements (r = 0.70; Figure 4). 
This is no surprise since more than 90% of the total input data points 
were obtained from plant-derived estimates based on species op-
tima. Values of the CEC map were only weakly correlated with the 
values from the other maps (r = 0.10–0.28) (Figure 4). Kriging and 
IDW maps (Figure S1) that used the same input data were highly 
correlated (Figure 4) but the mapped values using Kriging tended to 
have a higher correlation with the measured soil cation concentra-
tions of the validation dataset (compare r values from Figure 3 and 
Figure S1).

The maps of Kriging standard deviation (square root of Kriging 
variance; Figure 3b,d,f,h) obviously reflect the unequal density 
of sampling. In some areas, neighbouring soil data points were 
more than 200 km apart, such as in the large red patch in eastern 
Amazonia (Figure 3f). The uncertainty is generally the highest in 
the map based on direct soil measurements only, which has the 
fewest input data points (Figure 3b). The maps based on both di-
rect and indirect soil data points were similar whether the wet-
lands mask was used or not, but the Kriging standard deviations 
were higher in the map with the wetlands mask. This is probably re-
lated to the loss of densely sampled areas in northern and eastern 
Amazonia and inaccurate georeferencing in GBIF points, leading to 
species occurrences being incorrectly assigned to wetlands versus 
terra-firme.

The difference between measured and mapped soil values was 
not linearly related to either density or heterogeneity of the soil sam-
ples within a local buffer (Figure 5a,b). This indicates that the num-
ber and distribution of sampling points may have weak or no effect 
on the overall accuracy of the estimated values. Kriging standard 
deviation significantly decreased with increasing density of sampling 
points regardless of whether it was assessed in the locations of the 
validation dataset (Figure 5c) or in random locations (Figure 5e). We 
found a negative relationship between the mapped Kriging standard 
deviation and the standard deviation estimated for all sample values 
within each buffer (Figure 5d,f).

TABLE  1 Accuracy of predictions of soil cation concentration 
using fern and lycophyte species as indicators. Accuracies are 
measured by root mean squared error (RMSE) and coefficient of 
determination (R2) of the linear regressions between predicted and 
observed values. The combination of high R2 and low RMSE 
indicates a good regression fit. The transfer method was weighted 
averaging (WA) with monotonic deshrinking. The inverse of species 
tolerance was used as weight where indicated. Values are based on 
leave-one-out cross-validation

Data
Tolerance  
weighing RMSE R2

Abundance No 0.536 0.742

Yes 0.521 0.757

Presence–Absence No 0.529 0.749

Yes 0.492 0.782
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4  | DISCUSSION

4.1 | Using indicator species to mitigate 
environmental data paucity

Using soil cation concentrations as estimated from the occurrences 
of indicator plant species gave us a nearly 12-fold increase in the 
volume of input data for modeling, compared to using soil data avail-
able from direct measurements only. This explains why the maps 
that included plant-based soil data performed considerably better 
than maps that were based on direct soil measurements only. An 
increase in the volume of input data not only tends to improve mod-
elling accuracy as such (Grunwald et al., 2011) but it also reduces 
mapping sensitivity to different interpolation methods, which makes 
map accuracy less dependent on methodological choices (Chaplot 
et al., 2006; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Species-derived environmental values can be less accurate 
than directly measured values, so there may be a trade-off be-
tween data density and data accuracy (Chaplot et al., 2006). This 
is because species occurrences are affected by other factors than 
the variable of interest, such as biological interactions, different 
aspects of climate and various soil properties. The effects of such 
confounding factors can bias the species optima for the environ-
mental variable of interest. Thus, although validation results sug-
gest that the maps presented here mostly reflect the modelled 
environmental gradient, it is important to be aware that residual 
effects of other factors may also influence the mapped patterns.

If the modelled variable corresponds to the strongest environ-
mental gradient that the species respond to, residual effects are 
likely to be small, but if the interest is in modelling a less important 
environmental variable, confounding factors are likely to be a real 

F IGURE  3 Maps of soil cation 
concentration (left column) and Kriging 
standard deviation (right column) as 
modelled using different sets of input data 
(rows). Pearson's correlation (r) between 
soil cation concentrations as read off the 
map and as measured in soil samples of 
the Amazon Forest Inventory Network 
(RAINFOR) is shown in the upper right 
corner. Input data used in the maps are: 
(a, b) direct soil data only (measured from 
soil samples); (c, d) indirect soil data only 
(plant-derived estimates); (e, f) direct 
and plant-derived soil data together; 
(g, h) direct and plant-derived soil data 
together with Kriging run separately 
for wetlands and terra-firme areas (map 
extent limited to the area covered by the 
available wetlands map). The scale bars 
show 10-based logarithms of base cation 
concentration (Ca + Mg + K) as expressed 
in cmol(+)/kg. High-resolution versions of 
the maps obtained by Kriging are available 
in Supplementary Material S1. Raster 
versions of maps e, f, g, and h are available 
in Pangaea (see Data Accessibility section)
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problem. In addition, species tolerances will be very broad along 
an environmental gradient that is irrelevant to them, which further 
reduces species predictive power. In our example, the increase in 
the number of data points amply compensated for any decrease in 
point accuracy there might have been due to the use of surrogate 
data. This is consistent with earlier studies having found that soil 
base cation concentration is a very strong determinant of fern and 
lycophyte species occurrence patterns in Amazonia (Tuomisto et al., 
2016; Tuomisto, Ruokolainen, et al., 2003; Zuquim et al., 2014).

Many data-poor regions are similar to Amazonia in that directly 
measured soil data are much sparser than species occurrence records. 
Moreover, the latter are increasingly accessible thanks to biodiversity 
data portals such as GBIF and SpeciesLink, which facilitates the use 
of indicator species for modeling ecologically relevant environmental 
variables. We used ferns and lycophytes as indicators, because earlier 
studies have both shown them to be useful for this purpose and pro-
vided the field data needed to calculate species optima (Ruokolainen, 
Tuomisto, Macía, Higgins, & Yli-Halla, 2007; Tuomisto et al., 2003; 
Tuomisto, Ruokolainen, et al., 2003; Tuomisto et al., 2014, 2016; 
Zuquim et al., 2014). The method we propose here for modelling 
an environmental variable is not restricted to ferns and lycophytes, 
however; any biological group that has a strong affinity with the vari-
able of interest and enough data for model calibration could be used. 
For soil variables, other plant groups that have indicator potential 
in the tropics include the Melastomataceae, palms and Zingiberales 
(Cámara-Leret, Tuomisto, Ruokolainen, Balslev, & Munch Kristiansen, 
2017; Suominen et al., 2013; Tuomisto et al., 2016).

Our approach for modelling environmental variables using indica-
tor species has the potential to inform both fundamental and applied 

research on ecology and biogeography in Amazonia and other poorly 
sampled areas. The currently available digital soil maps have prob-
lems of low spatial accuracy and lack of ecologically relevant vari-
ables (Moulatlet et al., 2017). This may have caused researchers to 
underestimate the role of soils in shaping tropical forests, as several 
studies have found only a weak relationship between map-derived 
soil information and the structure, composition and resilience of 
tropical forests (Albuquerque & Beier, 2015; Kissling et al., 2012; 
Levis et al., 2017; McPherson, 2014; Poorter et al., 2015; Thomas, 
Alcázar Caicedo, Loo, & Kindt, 2014). In stark contrast, such studies 
that have sampled soils in the field have found soil variables, includ-
ing soil cation concentration, very important (Cámara-Leret et al., 
2017; Higgins et al., 2015; Pansonato, Costa, de Castilho, Carvalho, & 
Zuquim, 2013; Phillips et al., 2003; Suominen et al., 2013; Tuomisto, 
Ruokolainen, et al., 2003; Tuomisto et al., 2014; Zuquim et al., 2014).

Although soil base cations are important plant nutrients and 
therefore directly linked to plant physiology and growth, broad-scale 
maps of their concentration in the soil are currently lacking for many 
areas, such as Amazonia. Our maps provide estimates of this infor-
mation and can be incorporated in habitat and species distribution 
models across Amazonia. When using such plant-derived environ-
mental data layers, it is important to be aware of which data they 
were based on in order to avoid circularity. For example, species dis-
tribution models (SDM) should never use as input occurrence data 
the same plant occurrence records that were already used to gen-
erate the soil map. Therefore, if our soil cation concentration map is 
used for SDMs of ferns or lycophytes, the species occurrence data 
that is currently included in GBIF or SpeciesLink should not be used 
as input data. However, SDMs concerning any other plant or animal 
group do not have this limitation.

4.2 | Transfer functions and indicator species  
optima

One can test if a given organism group is informative regarding an 
environmental variable of interest by applying a transfer function 
to first calculate species optima and then use these optima to re-
construct the variable at sites for which direct measurement data 
are available (Birks, 2003). Our tests using weighted averaging con-
firmed that ferns and lycophytes provide good predictors of soil 
cation concentration in Amazonia. We also found that, although 
species with broad tolerances along an environmental gradient are 
less informative than species with narrow tolerances, there was 
no need to exclude the generalist species as they did not notice-
ably increase the error in the environmental variable estimates. 
It is also noteworthy that we obtained similar results using pres-
ence–absence and abundance data, which is in agreement with 
an earlier study using a smaller dataset (Zuquim et al., 2014). This 
is good news both for the calculation of species optima and for 
applying them for modelling environmental conditions, because 
several existing datasets do not contain abundance information. 
Furthermore, presence–absence data are easier and faster to col-
lect than abundance data.

F IGURE  4 Pixel-by-pixel Pearson's correlations (r) between 
soil cation concentration maps obtained using four different input 
datasets and two different interpolation methods as well as the 
cation exchange capacity (CEC) map obtained from SoilGrids. Both 
cation concentrations and CEC were log-10-transformed before 
analysis
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The accuracy of the calculated species optima is dependent on 
how representative the training data is of the environmental gradi-
ent of interest. If only a part of the gradient is sampled, or sampling 
density varies along the gradient, the optima may become biased. 
Our sampling covers a long edaphic gradient, but whether it is 
representative of all Amazonia is difficult to assess. Nevertheless, 
we believe that the optima are robust, because earlier studies 
have found soil associations of fern and lycophyte species to be 
consistent among non-overlapping study areas in different parts 
of Amazonia (Salovaara et al., 2004; Tuomisto & Poulsen, 1996; 
Tuomisto et al., 2002; Zuquim et al., 2014). Furthermore, there 
seems to be much redundancy in floristic communities, such that 
several species with similar optima coexist in any one locality. 

Consequently, relatively good predictions can be obtained even 
with superficial sampling that has many false absences, such as the 
entirely opportunistic species occurrence points that can be ob-
tained from herbarium data through online portals such as GBIF 
and SpeciesLink.

When weighted averaging is used to calculate plant-derived en-
vironmental values, the repeated calculations of averages necessar-
ily bias optimum values towards the overall mean of the variable, 
especially for data points at the extremes of the gradient. The result-
ing underestimation of the length of the environmental gradient can 
be mitigated with a deshrinking step (see Step 2), which restores the 
original gradient length and gives more reliable estimates (ter Braak 
& van Dam, 1989; Juggins, 2017).

F IGURE  5 Relationships between 
error, uncertainty and sampling density 
in the soil cation concentration map 
shown in Figure 3e. Sampling density 
was defined as the number of data points 
within a buffer of 6 arcmin radius (~11 km) 
around each validation data point (N. of 
samples in buffer [RAINFOR]) or around 
points randomly chosen in each of a 
20 × 20 arcmin cells of an Amazonian grid 
(N. of samples in buffer [random]). Error 
was defined as the absolute difference 
between values observed in the RAINFOR 
validation dataset and mapped values  
(Δ measure-map). Two kinds of indices 
were used to quantify uncertainty. The 
first was based on the standard deviation 
of input values inside each buffer (sd in 
buffer [RAINFOR]; SD in buffer [random]) 
and the second on the mapped value 
of Kriging standard deviation for the 
centre points of the buffers (Mapped 
sd [RAINFOR]; Mapped sd [random]). 
Significant Pearson's correlation values 
(r) are shown in the upper right corner 
of each panel. When significant, linear 
regressions are shown with blue solid 
lines. Black dashed lines are loess smooth 
curves with two degrees of freedom and 
confidence intervals shown in gray



     |  11Methods in Ecology and Evolu
onZUQUIM et al.

4.3 | Interpolation and validation

In our example case, we used popular and simple interpolation meth-
ods that are widely applied in digital soil mapping (Cook, Jarvis, & 
Gonzalez, 2008; Grunwald, 2009). Because Kriging implements 
distance-based averaging, it gives relatively smooth and gradual 
changes in the modelled values, whereas IDW tends to respond 
more strongly to the values found at individual data points. With 
our data, the maps of soil cation concentration generated by Kriging 
were more accurate than those generated by IDW.

Digital mapping techniques are evolving rapidly, and more so-
phisticated and computation-intensive interpolation methods are 
becoming increasingly available (Hengl et al., 2017). These methods 
may use covariates and machine learning to refine the accuracy and 
resolution of maps. Modern machine-learning techniques have been 
applied to fit predictive models of edaphic conditions and create 
maps with global accuracy often close to a correlation of 60% (Hengl 
et al., 2017). However, high global accuracy does not mean that a 
map is uniformly accurate. On the contrary, map accuracy can vary 
drastically among areas, being lowest where data density is low (e.g. 
Amazonia, Africa).

Validation is an important step to evaluate the quality of maps. 
Surprisingly, it has been estimated that more than one-third of 
the published soil maps have not been validated at all (Grunwald, 
2009). Validation can be done using an independent test dataset, or 
by cross-validation (Chatfield, 1995), even though the latter might 
overestimate the accuracy of the maps (Brus et al., 2011). We used 
an independent validation dataset with broad coverage. However, 
sampling in Amazonia is strongly biased towards accessible areas 
(Nelson, Ferreira, da Silva, & Kawasaki, 1990; Schulman, Toivonen, 
& Ruokolainen, 2007), so both the input dataset used for mapping 
and the validation dataset are spatially biased and large areas have 
very low data density. Yet, this bias seems to have a minor impact on 
our validation since the results obtained from random and sparsely-
distributed points were similar.

Despite the advance in new modeling techniques, significant 
improvement in map accuracy for data-poor areas can only be ex-
pected if the quality of modeling input data increases. This can be 
achieved by including covariates in the models (Hengl et al., 2017) 
with the aid of remote sensed data (Van Doninck & Tuomisto, 2018) 
and/or increasing the number of input points. Our method tackles 
the latter by taking advantage of already existing information avail-
able in natural history museums, which makes it possible to obtain 
species-derived environmental variable estimates for sites lacking 
direct environmental measurements.

5  | CONCLUSIONS

Scarcity of input data is often a major constraint to the quality 
of thematic maps (Hengl et al., 2014; Lagacherie, 2008; Minasny, 
McBratney, & Lark, 2008). Here, we developed a method to al-
leviate data paucity and improve digital environmental mapping 

of data-poor areas. Our results demonstrate that georeferenced 
biological data can be used to interpolate environmental values 
over large, otherwise unsampled areas. We tested the method by 
using fern and lycophyte occurrences to map soil cation concen-
tration in Amazonia, but the method is flexible and can be applied 
to other environmental variables and other organism groups. 
The prerequisite for success is that the variable to be mapped 
is strongly related to the occurrences of the selected indicator 
species group. This can be tested with transfer function analysis 
using field data that provide both species occurrence information 
and measurements of the environmental variable of interest at 
the same sites. Species with broad tolerances can be removed if 
their inclusion would reduce accuracy of predictions. Once the 
set of indicator species has been chosen, their optima along the 
gradient can be calculated and assigned to geographical locations 
where the species have been documented to occur. For this pur-
pose, data from public repositories such as GBIF, SpeciesLink, 
VertNet, etc. can be used after appropriate cleaning. The values 
of the species-derived environmental variable can then be com-
bined with actually measured values and used as input data points 
in interpolation to create a raster surface for the area of inter-
est. Finally, the output digital maps can be used as environmental 
layers in studies such as species distribution modelling, habitat 
modelling, and development of habitat suitability scenarios under 
climate change. The results of such studies can contribute both to 
advancing future research and to conservation planning in poorly 
sampled areas.
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