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Abstract 
Background and aims  In highly weathered soils 
of central Amazonia, where nutrients such as phos-
phorus (P) and base cations are scarce, fertilization 
experiments have demonstrated above- and below-
ground effects on total net primary productivity 
(NPP). This study examined how fine root stocks and 
turnover responded to added nutrients over a two-year 
period. We predicted that adding a limiting nutrient 
would decrease fine root stocks and increase turnover, 

with the strongest effects from P, followed by base 
cations, and no response to N.
Methods  Fine roots (< 2  mm diameter) were sam-
pled from the 0–30 cm soil layer in a low-fertility pri-
mary forest in central Amazon subjected to a large-
scale factorial experiment adding P, base cations, and 
N over two years. Fine root turnover was calculated 
as the ratio between fine root productivity, measured 
with in-growth cores, and fine root stock.
Results  Fine root stocks remained unchanged with 
nutrient addition. However, P increased root turnover 
by 23% and 48% in the first and second years, respec-
tively, while base cations addition reduced turno-
ver by 24% in year two. N had no significant effect, 
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though a trend toward reduced turnover was observed 
in the second year.
Conclusion  The results of this study show that fine 
root standing stock and turnover in the central Ama-
zon are regulated by soil nutrient availability, espe-
cially P and base cations. The contrasting responses 
observed suggest distinct belowground resource-use 
strategies for different nutrients, shaped by the nutri-
ent specific mobility in the soil and physiological role 
in the plant.
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Abbreviations 
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LME	� Linear mixed effects models
INPA	� National Institute for Amazonian Research
NPP	� Net primary productivity
N	� Nitrogen
Mg	� Magnesium
P	� Phosphorus
K	� Potassium
STRI	� Smithsonian Tropical Research Institute

Introduction

Soil nutrient availability is a key factor for net 
primary productivity (NPP) in forest ecosystems, 
especially in tropical forests (Vitousek et  al. 
2010). The effects of nutrient availability on forest 
functioning vary depending on the nutrient and 
ecosystem components, reflecting the complexity of 
these interactions (Graefe et al. 2010; Homeier et al. 
2012; Alvarez-Clare et  al. 2013; Manu et  al. 2022; 
Cunha et  al. 2022; Wright and Harms 2024). On 
top of that, interactions between soil conditions and 
climatic variability across the basin play a crucial 
role in species distribution and forest dynamics 
(Malhi et al. 2009; Aragão et al. 2009; Mercado et al. 
2011; Quesada et  al. 2012). Approximately 60% 
of the Amazon basin is composed of low-fertility 
soils (Quesada et al. 2010, 2012). Large parts of the 
Amazon region are established on highly weathered 
soils, where the low availability of rock-derived 
phosphorus (P) and the base cations potassium (K), 
calcium (Ca), and magnesium (Mg), potentially 
impact the growth of forests (Quesada et  al. 2010, 
2012; Quesada and Lloyd 2016). In contrast, 
soil nitrogen (N) accumulates over time through 
biological fixation and atmospheric deposition (Hedin 
et al. 2003), resulting in relatively high levels of N in 
highly weathered soils of central and eastern Amazon 
(Quesada et al. 2010).

The net primary productivity (NPP) allocation to 
fine roots (roots < 2  mm) represents between 5 and 
49% of total lowland tropical forests NPP (Huaraca 
Huasco et al. 2021). Fine roots are critical for acquir-
ing nutrients and water, but also for supporting the 
overall function and resilience of the root system 
under environmental stress (Freschet et  al. 2021). 
Understanding root dynamics is, therefore, essen-
tial to gain insights into ecosystem functioning and 
responses to future global changes. For instance, in 
the Amazon basin, low soil fertility is related to lower 
belowground productivity but greater root biomass 
storage compared to high soil fertility (Aragão et al. 
2009; Quesada et al. 2012). To thrive in the nutrient-
limited conditions of Amazonian soils, plant species 
have evolved strategies that allow them to sustain pro-
ductivity and support nutrient, including mycorrhizal 
symbioses, organic acid exudation, acid phosphatase 
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exudation, and intensive fine root foraging (Lugli 
et al. 2020; Martins et al. 2021; Reichert et al. 2022).

The equilibrium between root production, biomass 
accumulation, and replacement of older roots to 
optimise resource acquisition affects ecosystem 
function and dynamics. Fine root dynamics can be 
described using three complementary metrics.  Fine 
root productivity represents plant investment in 
belowground growth for resource acquisition over a 
given period; fine root stock represents the current 
standing biomass of fine roots at a given point in 
time, integrating past production and mortality; 
and fine root turnover describes the rate at which 
root biomass is replaced by new growth and is 
inversely related to root lifespan (Yavitt et  al. 2011; 
Huaraca Huasco et  al. 2021). The variability of 
these three parameters directly influences the 
adaptability and resilience of forest ecosystems to 
varying environmental conditions and highlights 
the complex interactions between environmental 
properties and plant morphological and physiological 
characteristics (Vogt et  al. 1996; Huaraca Huasco 
et al. 2021; Freschet et al. 2021; Cusack et al. 2021). 
In resource-poor environments, such as in vast areas 
of the Amazon basin, conservative mechanisms are 
common to maximise nutrient use, resulting in slower 
C dynamics when compared to more fertile regions 
(Bloom et  al. 1985; Yavitt et  al. 2011; Lugli et  al. 
2021; Reichert et  al. 2022). Therefore, maintaining 
fine root biomass standing stock by reducing root 
turnover to prevent nutrient loss is prioritised over the 
productivity of new roots in places with low nutrient 
availability (Huaraca Huasco et al. 2021). Conversely, 
in nutrient-rich environments, C cycling in roots 
tends to be faster, shifting C allocation investments 
from long-lived root biomass stocks to increased 
productivity and turnover of fine roots, leading to 
more acquisitive plant economic strategies (Aragão 
et al. 2009; Huaraca Huasco et al. 2021; Cusack et al. 
2021). As a consequence of these dynamics, the fate 
of root C significantly impacts the C soil pool and 
the dynamics of the forest (Poirier et al. 2018; Sokol 
and Bradford 2019; Cunha et al. 2022; Kengdo et al. 
2023).

Nutrient manipulation experiments are essential 
for understanding the effects of nutrient limitations 
on ecosystem dynamics and resilience (Hofhansl 
et  al. 2016). Experimental studies in other tropical 
forests have investigated the response of fine root 

dynamics to nutrient additions. In a seasonal lowland 
tropical forest in Panama growing in relatively fertile 
soils, fine root stock decreased after four years of 
K addition and fine root turnover increased (Yavitt 
et al. 2011). After 14 years of fertilisation, combined 
addition of N, P, and K resulted in a 50% reduction in 
fine root stocks in the 0–10 cm soil layer (Wurzburger 
and Wright 2015). In a humid semi-deciduous 
tropical forest in Uganda, also growing on relatively 
fertile soils, fine root stocks decreased with N and 
K addition, fine root production decreased with K 
addition and turnover was not affected in the 0–30 
cm deep layer after two years of fertilization (Manu 
et al. 2024). These findings highlight the importance 
of multiple nutrients for root function across the 
tropical forests (Manu et  al. 2024), and the need to 
better understand how different nutrients and their 
interactions regulate fine root dynamics. To date, 
most of the available evidence comes from relatively 
fertile tropical forests and focuses primarily on fine 
root stocks and productivity, with less emphasis on 
fine root longevity and turnover, especially under low 
nutrient availability (Yavitt et  al.2011; Wurzburguer 
and Wright 2015; Lugli et al 2021; Manu et al 2024). 
However, considering fine root stocks, productivity, 
and especially turnover, it becomes possible to assess 
not only how much C is allocated to the root system, 
but also how rapidly this C is renewed and returned to 
the soil (Freschet et al. 2021; Cusack et al. 2021). This 
integrated perspective allows us to distinguish short-
term responses from more persistent adjustments in 
belowground functioning. Additionally, it provides a 
more robust basis for evaluating how highly nutrient-
poor terra firme forests in central Amazonia may 
respond to sustained changes in nutrient availability 
under ongoing global environmental change.

The current study builds on the findings of the 
Amazon Fertilisation Experiment (AFEX) (Lugli 
et  al. 2021; Cunha et  al. 2022) by incorporating 
fine root productivity data and introducing new 
insights into fine root stocks and turnover, ultimately 
exploring the influence of phosphorus (P), base 
cations, and nitrogen (N) on overall root dynamics. 
The Amazon Fertilisation Experiment (AFEX), 
conducted in a primary low-fertility terra firme forest 
in central Amazonia, has shown that the addition of 
P increased fine root productivity in the 0–30 cm soil 
layer across two years, whereas base cation additions 
increased fine root productivity in the first year of 
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additions (Lugli et  al. 2021). After two years, only 
P maintained significant effects, enhancing fine root 
and canopy NPP without impacting stem growth 
(Cunha et al. 2022). Thus, fine root productivity can 
be strongly affected by changes in soil resources, 
particularly in locations where nutrient availability is 
low (Wurzburger and Wright 2015; Lugli et al. 2021). 
These findings indicate a faster C cycle, resembling 
naturally fertile forests like those from the western 
Amazon (Aragão et  al. 2009; Quesada et  al. 2012). 
Furthermore, the observed stronger responses of P 
addition after two years suggest that C dynamics have 
yet to reach a new equilibrium, with potential future 
impacts on ecosystem functioning and on C balance.

Fine root productivity, standing biomass stock, 
and turnover represent the pathways of C allocation 
within root systems, which are essential for 
determining belowground and whole-ecosystem C 
dynamics (Freschet et al. 2021; Cusack et al. 2021). 
Thus, we expect reduced root standing stock biomass 
and increased root turnover with the addition of 
the limiting nutrients. Specifically, given that rock-
derived nutrients such as P and base cations are more 
limiting than N in central Amazonian forests, we 
predict the following responses to nutrient additions: 
(i) a reduction in plant community fine root stocks and 
a more pronounced increase in overall root turnover 
with P addition, driven by the strong productivity 
gains associated with enhanced P availability; (ii) 
similar but less pronounced effects with cation 
addition, reflecting their low natural availability as 
rock-derived nutrients; (iii) more substantial effects 
in the second year of nutrient addition than in the 
first, suggesting cumulative impacts over time; and 
(iv) no significant changes in root dynamics with N 
addition, given its relatively high availability in these 
ecosystems.

Material and methods

Site description

The study site is located in a continuous old-
growth evergreen forest growing in the plateaus of 
the ZF-3 Reserve, AM, Brazil (02° 25′ 00’’ S; 59° 
43′ 00’ W), managed by the Biological Dynamics 
of Forest Fragments Project (BDFFP) (Laurance 
et  al. 2018), a collaborative project between the 

National Institute for Amazonian Research (INPA) 
and the Smithsonian Tropical Research Institute 
(STRI). The forests are classified as Lowland Dense 
Ombrophilous Terra Firme forests (Santos 2014), 
with a mean air temperature of 26  °C and mean 
annual precipitation of 2400 mm, and a dry season 
from July to October (Tanaka et al. 2014). The soil 
types are Ferralsols and Acrisols (World Reference 
Base for Soil Resources; or Oxisols and Ultisols 
in the U.S. Soil Taxonomy (Quesada et  al. 2010, 
2011), which are highly weathered and nutrient-
depleted, with particularly low concentrations of 
rock-derived elements (mean total P 85.7 mg kg −1, 
pH 4.2, total N 0.19% and sum of total bases 0.22 
cmolc kg−1 for the 0–30  cm (Ribeiro, 2023). The 
research site has high tree species diversity, with 
about 280 species (> = 10  cm DBH) per hectare 
(Cunha et al. 2022). For a more detailed description 
of the site, see Lugli et al., (2021) and Cunha et al., 
(2022).

The AFEX experiment consists of 32 plots 
distributed in 4 blocks, with at least 200 m distance 
between them, installed in plateau areas with 
similar soil, vegetation, and terrain. In each block, 
there are eight 50  m × 50  m plots (at least 50  m 
apart from each other), with one control plot and 
seven plots with nutrient addition treatments: P, 
N, CAT (Ca, Mg, K), P + N, P + CAT, N + CAT, 
P + N + CAT, resulting in 4 plots per treatment 
(n = 4). Nutrient additions were split annually 
into three equal applications throughout each wet 
season, with the first application occurring between 
May and June 2017, at the following total rates: (1) 
N: 125 kg ha−1 yr−1 as urea; (2) P: 50 kg ha−1 yr−1 
as triple superphosphate, and (3) base cations: 
50 kg ha−1 yr−1 for Ca, 20 kg ha−1 yr−1 as Mg in the 
form of dolomitic limestone, plus 50 kg ha−1 yr−1 as 
potassium chloride for K. Dry fertilisers were added 
to the soil surface by hand, covering the plot area, 
including the surface of the ingrowth cores (Lugli 
et  al. 2021). Roots in this study were sampled in 
the center 30  m x 30  m (900 m2) of each plot at 
the community level, with all fine roots collected 
regardless of species identity or growth form 
(woody vs. non-woody), and our results represent 
the response of root dynamics for the first two years 
of nutrient addition from 2017 to 2019.
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Fine root collections

Fine root stock was sampled in August 2017 and 
September 2019. The August 2017 sampling 
represents the 2017/2018 period (year 1) and the 
September 2019 sampling represents the 2018/2019 
period (year 2) for fine root stock. No stock 
measurements were conducted in 2018. In both 
fine root stock campaigns, soil cores were collected 
from previously undisturbed locations within the 
plot, avoiding any areas affected by prior sampling. 
Four ingrowth core campaigns (collections every 
three months) were used to determine the annual 
productivity. Campaigns from August 2017 to 
September 2018 were used for year 1 and campaigns 
from September 2018 to September 2019 were used 
for year 2.

In both fine root stocks and fine root productivity 
sampling campaigns, five soil cores per plot were 
collected. Cores measured 12  cm in diameter and 
30  cm in depth. In the field, each of the five cores 
was separated by depth and homogenised to produce 
two subsamples per plot (0–10  cm and 10–30  cm; 
n = 64). All fine roots from each soil depth subsample 
were sampled using a modified method introduced by 
Metcalfe et al. 2007. Briefly, fine roots were manually 
extracted from the soil in four intervals of 15  min 
and curves were fitted to estimate total root biomass 
over 180 min (see details in Metcalfe et al. 2007 and 
Lugli et al. 2021). The Michaelis–Menten asymptotic 
curve (Eq. 1) was the best model to extrapolate to the 
amount of root biomass that would be sampled over 
180 min:

where y is the total fine root biomass estimated in each 
sample after 180 min of sampling, x is accumulated 
time (15 to 180 min), � and � fitted parameter from 
the equation for each plot and depth.

In the lab, fine roots were separated into diameter 
classes < 2  mm and ≥ 2  mm, cleaned and dried at 
60 ºC until constant mass and weighed. For our 
calculations, we used fine roots < 2 mm in diameter. 
Fine root stocks were calculated as the total dry mass 
of fine roots per hectare per soil depth (0–10 cm and 
10–30 cm) and expressed in Mg C ha−1. In this study, 
the mean C fraction in root dry mass was considered 
equal to 0.439 (Lugli et al. 2021).

y =
� × x

� × x

Fine root productivity from Lugli et al., (2021) and 
Cunha et al., (2022) was used in this study (Table S1 
and S2—Online Resource). To estimate fine root 
productivity, ingrowth cores (2  cm plastic mesh) 
30  cm deep and 12  cm in diameter were installed 
in August 2017 following Metcalfe et  al., (2007). 
Ingrowth cores were installed in the same cores 
where roots were sampled for fine root stock analysis 
(five cores per plot, n = 32), and root-free soils 
from each plot and respective depth (0–10  cm and 
10–30  cm; n = 64) were inserted into each ingrowth 
core. For each core, soil from each depth layer was 
gently repacked by hand to approximate the in-situ 
structure and bulk density and to avoid large air 
gaps or excessive compaction. Ingrowth cores were 
collected every three months after installation. Fine 
root productivity was calculated as the dry mass of 
roots produced per hectare by depth (0–10  cm and 
10–30 cm) for a year, expressed in Mg C ha−1 yr−1.

Fine root turnover was obtained by the ratio 
between annual fine root productivity and fine 
root stocks per plot from the 0–30  cm soil depth 
(n = 64, Freschet et  al. 2021). Fine root turnover for 
year 1 was obtained by dividing annual fine root 
productivity (from ingrowth cores collected between 
August 2017 and September 2018) by the fine root 
stock measured in August 2017; similarly, fine root 
turnover for year 2 was obtained by dividing annual 
fine root productivity (from ingrowth cores collected 
between September 2018 and September 2019) by the 
fine root stock measured in September 2019. Fine root 
turnover was expressed in year−1, representing the 
rate at which root biomass is replaced annually, with 
higher values indicating faster turnover, meaning a 
shorter lifespan (Freschet et al. 2021). Since fine root 
turnover is mathematically the inverse of longevity or 
root lifespan (Freschet et  al. 2021), turnover values 
were occasionally converted to fine root longevity 
(in days) to improve interpretability and facilitate 
comparisons across findings.

Data analysis

Linear mixed effects models (LME) were used 
to evaluate the effects of each nutrient and all 
interaction terms (P × base cations × N) with our 
response variables: fine root stock and turnover 
(n = 32 plots) for the 0–30  cm depth. The analysis 
initially employed full factorial models to assess 
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all potential interactions and the responses across 
years (Eq. 2). In the full factorial models, plots were 
incorporated as random factors, and years were 
analysed as both fixed and random factors to account 

for temporal variability. Simple factorial models were 
also used to observe the responses of the variables 
within each year (Eq.  3). In both models, nutrient 
presence or absence was included as fixed factors and 
experimental blocks were treated as random factors.

(2)Response variable ∼ P ∗ base cations ∗ N ∗ Year + (1|Year) + (1|Block∕Plot)

Full factorial models were simplified using 
backward elimination with the "step" function in the 
lme4 package (Bates et  al. 2015), maintaining the 
random effects during the simplification process. 
The simplified models were extracted using the 
"get_model" function from the ‘lmerTest ‘ package 
(Kuznetsova et  al. 2017), which reruns the final 
model to include only the fixed and random effects 
remaining after simplification. Effects of nutrient 
addition were considered statistically significant at 
p < 0.05.

For any simplified models with significant 
interactions, we conducted post-hoc analyses 
using the “emmeans” function in the ‘emmeans 
‘ package (Lenth 2017). Pairwise comparisons 
of estimated marginal means were performed 
using the Tukey method (adjust = “tukey”) to 
determine differences in the mean values of the 
interacting variables. All models were conducted 
using ‘LMERConvienceFuncions ‘, the lmer() 
in the ‘lme4’, and ‘lmerTest’ packages (Bates 
et  al. 2015; Kuznetsova et  al. 2017; Tremblay and 
Ransijn 2020) and model fits were determined 
using the “check_model” function in the package 
‘performance’(Lüdecke et al. 2021).

For the graphical representation of the effect of 
specific nutrients, all plots where a nutrient was not 
added (e.g., -P; n = 16 for one year) were compared 
with all plots where that nutrient was added (e.g., + P; 
n = 16) (Wright et  al. 2011; Lugli et  al. 2021). 
Similarly, for interactions in nutrient effects, results 
were compared across all plots where nutrients were 
added together and separately (e.g., -P-CAT, n = 8; 
-P + CAT, n = 8; + P-CAT, n = 8; + P + CAT, n = 8). 
All statistical analyses were run in the statistical 
program R version 4.1.1 (R Core Team 2024).

(3)
Response variable ∼ P ∗ base cations ∗ N + (1|Block) Results

Fine root dynamics with P addition

No significant effect of P addition was observed on 
fine root stock in the top 30 cm of the soil (Fig. 1a). 
Fine root stock in the first year was 1.42 ± 0.07  Mg 
C ha−1 in -P plots and 1.41 ± 0.05 Mg C ha−1 in + P 
plots, and in the second year, 1.38 ± 0.07 Mg C ha−1 
in -P plots and 1.33 ± 0.06 Mg C ha−1 in + P plots.

However, we found a significant increase in 
root turnover with added P both in year 1 and year 
2 (Fig.  1b). In the first year of nutrient addition, 
fine root turnover was 23% higher in plots with 
P addition than in plots without P addition (-P: 
1.12 ± 0.08  yr−1; + P: 1.38 ± 0.12  yr−1; F1,27 = 4.29, 
p = 0.048; Fig.  1b). The increase in root turnover 
translates to a decrease in root lifespan of 
approximately 60 days with P addition. In the second 
year, root turnover increased by 48% with + P when 
compared to -P plots (-P: 0.69 ± 0.06  yr−1; + P: 
1.02 ± 0.08  yr−1; F1,26 = 16.52, p < 0.001; Fig.  1b), 
decreasing root lifespan by approximately 170  days. 
There were no significant differences between the 
mean fine root stock (F1,24 = 0.10, p = 0.75) or fine 
root turnover (F1,28 = 1.71, p = 0.20) indicating that 
mean values did not differ between year 1 and year 
2 across P addition treatments. Descriptive statistics 
(mean ± SE) and ANOVA results for all depth 
intervals, years, and nutrients are provided in the 
Online Resource (Tables S1–S8).

Fine root dynamic with base cations addition

No significant effect of base cations addition was 
found on fine root stock in years 1 or 2 (Fig. 2a). Fine 
root stock in the first year was 1.39 ± 0.06 Mg C ha−1 
in -CAT plots and 1.43 ± 0.08  Mg C ha−1 in + CAT 
plots (F1,21 = 0.127, p = 0.714) and in the second 
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year it was 1.33 ± 0.06 Mg C ha−1 in -CAT plots and 
1.39 ± 0.07 Mg C ha−1 in + CAT plots (F1,24 = 0.599, 
p = 0.446). No significant variation in fine root 
stock was detected between the years (F1,24 = 0.10, 
p = 0.75).

There was a significant decrease in fine root 
turnover with base cation additions in year 2 only 
(Fig.  2B). Correspondingly, there was a signifi-
cant interaction between CAT * Year (F1,28 = 8.05, 
p = 0.0084), with no differences between with and 
without base cation additions detected in Year 1 
(F1,26 = 1.19, p = 0.286) and a 24% decline in fine 
root turnover in response to base cations addi-
tions in year 2 (-CAT: 0.97 ± 0.09  yr−1; + CAT: 
0.74 ± 0.06  yr−1; F1,26 = 7.81, p = 0.0096; Fig.  2b). 

There was also a significant interaction between 
base cations and P in the second year, in which the 
effect of faster turnover with the addition of P was 
counteracted by addition of base cations (-CAT + P: 
1.23 ± 0.07  yr−1; + CAT + P: 0.82 ± 0.12  yr−1; 
F1,26 = 4.87, p = 0.036; Fig.  3). Root lifespan was 
approximately 296 days when P was added without 
base cations. However, adding base cations along-
side P cancelled this effect, reducing the effect of P 
on root turnover by 33% and extending root lifespan 
to 445 days.

Fig. 1   Fine root dynamics for the 0–30 cm soil depth for two 
years, with or without P-addition, in a lowland tropical forest 
in the central Amazon, Brazil. a. Fine root stock (Mg C ha−1) 
and b. Fine root turnover (yr.−1). Year 1 panel and Year 2 panel 
compare16 plots without or with P-addition (-P and + P respec-
tively). Means ± 1SE are presented. Significance levels indicate 
differences among nutrient addition treatments within each 

year, as follows: *** for p < 0.001, ** for p < 0.01, and * for 
p < 0.05, respectively. The dotted lines represent mean values 
for the control plots (no nutrients added; n = 4 plots). To calcu-
late the fine root turnover for Year 1, we used the fine root pro-
ductivity values reported by Lugli et al., (2021), and for Year 
2, we used the productivity values reported by Cunha et  al. 
(2022)
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Fine root dynamic with N addition

No significant effect was observed on fine root stock 
or in fine root turnover with N addition for years 1 
and 2 (Fig.  4). However, the root turnover under N 
addition was slightly lower than without N addition 
in year 2 (F1,26 = 3.35, p = 0.079). Fine root stock in 
the first year was 1.44 ± 0.05 Mg C ha−1 in -N plots 
and 1.38 ± 0.09 Mg C ha−1 in + N plots (F1,29 = 0.348, 
p = 0.561) and in the second year, 1.37 ± 0.07 Mg C 
ha−1 in -N plots and 1.34 ± 0.06  Mg C ha−1 in + N 
plots (F1,24 = 0.071, p = 0.792). Fine root turno-
ver in the first year was 1.26 ± 0.09  yr−1 in -N plots 
and 1.25 ± 0.11  yr−1 in + N plots (F1,21 = 0.00, 

p = 0.978), while in the second year these values 
were 0.93 ± 0.08 yr−1 in -N plots and 0.78 ± 0.08 yr−1 
in + N plots (F1,26 = 3.35, p = 0.079), correspond-
ing to an increase of approximately 176 days in root 
lifespan under N addition. No significant differences 
were observed between the two years in fine root 
stock (F1,24 = 0.10, p = 0.75) and fine root turnover 
(F1,28 = 1.71, p = 0.20) with N addition. Despite this, 
there was a significant interaction between N and 
base cations in year 2. We observed that root turno-
ver was higher without N and base cations compared 
to adding either or both N and base cations (-N-
CAT: 1.15 yr−1 and + N-CAT: 0.79 yr−1; F1,26 = 6.58, 

Fig. 2   Fine root dynamic for the 0–30 cm soil depth for two 
years, with or without base cations-addition, in a lowland tropi-
cal forest in the central Amazon, Brazil. a. Fine root stock (Mg 
C ha−1) and b. Fine root turnover (yr.−1). Year 1 panel and Year 
2 panel compare 16 plots without or with base cations-addi-
tion (-CATIONS and + CATIONS respectively). Means ± 1SE 
are presented. Significance levels indicate differences among 
nutrient addition treatments within each year, as follows: *** 

for p < 0.001, ** for p < 0.01, and * for p < 0.05, respectively. 
The dotted lines represent mean values for the control plots (no 
nutrients added; n = 4 plots). To calculate the fine root turnover 
for Year 1, we used the fine root productivity values reported 
by Lugli et al., (2021), and for Year 2, we used the productivity 
values reported by Cunha et al. (2022)
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p = 0.016; Fig. 5), resulting in an increase in fine root 
lifespan of 145 days when N was added.

Discussion

In the first two years of the nutrient addition 
experiment, root dynamics were responsive to 
increases in nutrient availability, with P addition 
eliciting the strongest changes across two years. 
While fine root stocks remained unchanged in all 
treatments, P addition accelerated fine root dynamics 
via increases in turnover. Surprisingly, base cations 
alone or combined with other nutrients also affected 
fine root C dynamics, but in the opposite direction 
as our predictions, decreasing fine root turnover and 
interacting with the effects of different treatments. 
After only two years of experimental treatment, 
detecting such responses in a hyper-diverse and slow-
growing forest demonstrates the complexity and the 
plasticity in root dynamics, which may significantly 

affect C stocks and fluxes in the central Amazon 
forest.

Previous AFEX results demonstrated that fine 
root productivity (0–30  cm depth) increased 23% 
with P addition in the first year of the experiment 
(Lugli et  al. 2021) and 29% after two years of P 
addition, in addition to a significant 19% increase 
in canopy productivity (Cunha et  al. 2022). Our 
findings provide new insights, indicating that 
despite the increased productivity observed in 
these studies, fine root stocks remained stable due 
to higher fine root turnover. These results show 
that even in the short term, increased soil resource 
availability in this forest leads to more productive 
above and belowground compartments, especially 
for more dynamic organs such as leaves and roots 
(no changes in stem productivity were detected; see 
Cunha et al. 2022). Such faster C cycling resembles 
above and belowground C dynamics of other 
naturally fertile forests, such as the ones growing in 
the western Amazon (Aragão et  al. 2009; Quesada 
et al. 2012), suggesting that this low-fertility forest 
may temporarily shift to a more “fast-cycling” state 
driven by short-lived fine roots and leaf tissues, 
with direct consequences for belowground C and 
nutrient cycling.

Fine root dynamics with P addition

We predicted that the addition of limiting nutrients, 
especially P, followed by base cations, would reduce 
the fine root stock (Bloom et  al. 1985). However, 
contrary to our expectations, none of the nutrient 
addition treatments had this effect. This suggests 
that adding nutrients over two years could have been 
insufficient to alleviate the plant’s nutritional limita-
tion, as root stocks remained unchanged. In tropical 
moist forests, fine root stocks (0–30 cm depth) ranged 
from 0.76 Mg C ha⁻1 in a primary lowland forest in 
Borneo to 21.86  Mg C ha⁻1 in an undisturbed terra 
firme forest in the eastern Brazilian Amazon (Aragão 
et al. 2009; Huaraca Huasco et al. 2021), encompass-
ing sites that differ in soil type and fertility. Our value 
of 1.34 ± 0.11 Mg C ha⁻1 in control plots lies toward 
the lower end of this spectrum of variation (Aragão 
et  al. 2009). Such natural low values of fine root 
stocks could also help explain the observed lack of 
downregulation after nutrient addition. Thus, instead 
of further reducing fine root stock, responses to 

Fig. 3   Fine root turnover (yr−1) for the 0–30  cm soil depth 
for year 2 in a lowland tropical forest in the central Amazon, 
Brazil. Fine root turnover (yr.−1) interaction between base cati-
ons and P. Each bar compares 8 plots without or with nutrient 
addition. Means ± 1SE (n = 8) are presented. The letters ’a’ and 
’b’ indicate significant differences between groups (p < 0.05) 
according to Tukey’s test. Groups sharing the same letter do 
not differ significantly. Dotted lines represent mean values for 
the control plots (no nutrients added; n = 4 plots)
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nutrient addition may occur via changes in other root 
attributes, such as increased fine root turnover and 
enhanced mycorrhizal associations, which can more 
efficiently exploit nutrient pulses in the soil (Freschet 
et al. 2021; Reichert et al. 2021).

In support of our first hypothesis, fine root 
turnover significantly increased in plots with added 
P. The combination of unchanged root stocks and 
increased root productivity resulted in increased fine 
root turnover, with the average fine root lifespan 
decreasing from 401 to 304  days after two years of 
P-addition. A shorter root lifespan leads to a generally 
younger and potentially more metabolically active 
root cohort in P-fertilised plots than longer-lived 
roots in -P plots. Since P has low mobility in the soil 
(Cole and Heil 1981), extensive root foraging for 
uptake is required. These younger fine roots might 
be particularly efficient in absorbing soil water and 
nutrients (McCormack et  al. 2015; Freschet et  al. 
2021). Thus, although such more active young roots 
might also have higher respiration rates (McCormack 

et al. 2015), the costs of building new roots might be 
lower than the costs of root maintenance (e.g. longer 
lifespan and/or higher stocks). As a result, trees 
increase their investments in fine root productivity 
to forage the soil in response to the abundance 
of P (Wurzburger and Wright 2015; Lugli et  al. 
2021; Cunha et  al. 2022). If the responsiveness to 
P addition increases with time, this would indicate 
that C dynamics in this forest have yet to reach a 
new equilibrium, with potential future changes in 
response intensity affecting these forests’ functioning 
and the whole C budget. Our fine root productivity 
estimates come from soil volumes previously 
sampled and refilled with root-free soil, as inherent to 
the ingrowth core method, which may differ slightly 
from undisturbed conditions. These methodological 
constraints and the relatively short duration of the 
experiment should be considered when interpreting 
absolute values, but do not undermine the robustness 
of our treatment comparisons or the clear patterns 
detected.

Fig. 4   Fine root dynamic 
for the 0–30 cm soil depth 
for two years, with or with-
out N-addition, in a lowland 
tropical forest in the central 
Amazon, Brazil. a. Fine 
root stock (Mg C ha−1) and 
b. Fine root turnover (yr.−1). 
Year 1 panel and Year 2 
panel compare 16 plots 
without or with N-addition 
(-N and + N respectively). 
Means ± 1SE are pre-
sented. Significance levels 
indicate differences among 
nutrient addition treat-
ments within each year, as 
follows: *** for p < 0.001, 
** for p < 0.01, and * for 
p < 0.05, respectively. The 
dotted lines represent mean 
values for the control plots 
(no nutrients added; n = 4 
plots). To calculate the fine 
root turnover for Year 1, we 
used the fine root productiv-
ity values reported by Lugli 
et al., (2021), and for Year 
2, we used the productivity 
values reported by Cunha 
et al. (2022)
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The increased fine root turnover with greater 
soil P availability could also be a response to 
changes in the nutritional quality of the root tissue 
(Lugli et  al. 2021). Increasing tissue quality,  for 
example through higher nutrient concentrations in 
fine roots, is expected to increase (i.e. accelerate) 
fine root decomposition rates, which ultimately 
influence and are influenced by the soil microbial 
community (Silver and Miya 2001). Additionally, 
faster fine root turnover could be a strategy to cope 
with increased root herbivory due to changes in root 
tissue stoichiometry (Wells et al. 2002; Freschet et al. 
2021). With abundant resources (e.g., P), trees might 
replace fine roots more frequently through higher 
turnover instead of investing in secondary compounds 
and greater tissue density to deter herbivores (Coley 
et  al. 1985; Wells et  al. 2002; Freschet et  al. 2021). 
The short-lived fine roots increase the frequency 
of C pulses to the soil as a result of faster fine root 
dynamic, potentially changing soil C stocks (Rasse 
et al. 2005; Metcalfe et al. 2007; Poirier et al. 2018; 
Sokol and Bradford 2019; Kengdo et al. 2023). Such 

a cascade effect could influence the existing microbial 
community (Wurzburger and Wright 2015; Poirier 
et  al. 2018; Luo et  al. 2022; Kengdo et  al. 2023) 
and, in the longer term, could even induce shifts 
in microbial community composition, which may 
further influence nutrient cycling, highlighting a 
critical aspect to be disentangled in future studies.

Fine root dynamics with base cations addition

We predicted that adding base cations would elicit 
similar root responses compared to P addition, 
reducing biomass. However, we found no changes 
in root stock biomass with base cation addition. In 
most tropical experiments that manipulated single 
base cations, fine root stocks decreased, contrasting 
the findings in our study. For instance, adding K 
reduced fine root stocks after two years of fertilisation 
in a semi-deciduous tropical forest in Uganda (Manu 
et  al. 2024) and in a lowland tropical rainforest in 
Panama (Yavitt et  al. 2011). The difference between 
these results and ours may be due to the varying 
natural nutrient concentrations in the soils of each 
area. In Uganda and Panama, the average values 
of the sum of bases in the 0–10  cm soil layer show 
significant variation across regions: Panama shows 
values of 13.4 cmolc kg−1 (Yavitt et al. 2011), Uganda 
reaches 43.1 cmolc kg−1 (Manu et al. 2024), with our 
study site displaying low values of 0.43 cmolc kg−1 
(Ribeiro, 2023), comparable to other Ferralsols in 
the Amazon basin (Alvarez et  al. 1996). Thus, our 
observed stability of root stock biomass across base 
cations additions and years may indicate adaptations 
to chronically low base cations availability with low 
plasticity of the root biomass to change.

We predicted that root turnover rates would 
increase with base cation addition. However, we did 
not find support for that in year 1, and contrary to 
expectations, fine root turnover decreased with base 
cations addition in the second year, extending root 
lifespan by nearly four months compared to plots 
without base cations addition. We also observed 
significant interactions between base cations and 
P during the second year, where the simultaneous 
addition of base cations and P (+ CAT + P) offsets 
the positive effect of P, bringing fine root turnover 
back to levels similar to the no base cations and no 
P condition (-CAT-P). The decrease in root turnover 
without changes in root stocks and root productivity 

Fig. 5   Fine root turnover (yr−1) for the 0–30 cm soil depth for 
year 2 in a lowland tropical forest in the central Amazon, Bra-
zil. Fine root turnover (yr.−1) interaction between N and cation. 
Each bar compares 8 plots without or with nutrient addition. 
Means ± 1SE (n = 8) are presented. The letters ’a’ and ’b’ indi-
cate significant differences between groups (p < 0.05) accord-
ing to Tukey’s test. Groups sharing the same letter do not differ 
significantly. Dotted lines represent mean values for the control 
plots (no nutrients added; n = 4 plots)
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(Lugli et  al. 2021; Cunha et  al. 2022) found in our 
study might suggest roots shifting towards more 
conservative mechanisms (McCormack and Iversen 
2019; Bergmann et al. 2020). In fact, alleviation from 
base cations limitation may manifest by increasing 
root lifespan contrary to responses to P addition 
(Manu et al. 2024) because base cations are generally 
mobile in the soil solution (Epstein and Bloom 
2006; Quesada et  al. 2010), allowing easier root 
access without extensive investment in foraging. In 
contrast, the naturally low total P levels in our site 
(88 mg  kg−1), combined with the low mobility of P 
in the soil (Cole and Heil 1981), may favour extensive 
root foraging for nutrient uptake when P availability 
is increased.

With increased cation availability, fine roots may 
acquire more nutrients per unit of root biomass 
through morphological and anatomical adaptations 
and possibly associations with mycorrhizal fungi 
without changes in root biomass (Weemstra et  al. 
2020). For instance, Lugli et  al., (2021) found that 
after one year of the experiment in the same study 
areas in central Amazon, cation addition increased 
fine root diameter and arbuscular mycorrhizal (AM) 
colonisation. If these effects persisted into the second 
year of fertilisation, the increased mycorrhizal root 
colonisation could benefit trees in the cation treatment 
by enhancing soil foraging and nutrient uptake 
without changes in root stocks or productivity (Comas 
et  al. 2014; Lugli et  al. 2021). From a cost–benefit 
perspective, investments in arbuscular mycorrhizas 
might be less C-costly for trees and result in higher 
nutrient acquisition rates (sensu “outsourcing”) than 
investing in new fine roots that would explore the soil 
themselves (sensu “do-it-yourself”) (Bergmann et al.; 
2020 and Lugli et al.; 2021). Therefore, future studies 
may determine whether the increased root lifespan 
observed in our experiment is linked to a possible 
increased investment in arbuscular mycorrhizal 
associations or alternative nutrient acquisition 
strategies.

Beyond their potential influence on mycorrhizal 
interactions, base cations play essential physiological 
roles in plants, contributing to structural integrity, 
enzymatic activation, and stress tolerance. Calcium 
(Ca) primarily supports cellular structure and long-
distance internal transport, Mg acts as an activator of 
vital enzymes, while K regulates osmotic potential, 

supports enzymatic functions in respiration and 
photosynthesis, and enhances abiotic stress tolerance 
(Taiz and Zeiger 2013; Hasanuzzaman et  al. 2018). 
Since the P treatment also contains high amounts of 
Ca and elicited a different effect than cation addition, 
we suggest that the observed response to base cations 
may be driven by K or Mg.

The differing soil mobility of base cations and 
P and their potential effects on root morphology 
and root symbiont associations may explain the 
contrasting outcomes in root lifespan. While 
two years of base cations addition may not have 
elicited strong responses on its own, it significantly 
influenced phosphorus’ impact on roots. Thus, we 
can hypothesise that base cations may contribute to 
root longevity by enhancing structural stability and 
reducing environmental stress. Additionally, this 
dual function, both ecological and physiological, 
could improve nutrient use efficiency and extend 
root lifespan, counteracting the results we found for 
P addition. Although the mechanisms underlying 
these interactions remain complex, base cations 
are increasingly recognised as key regulators of 
tropical forest functioning, influencing not only root 
physiology but also broader ecosystem dynamics 
(Yavitt et  al. 2011; Wurzburger and Wright 2015; 
Wright 2019; Bauters et  al. 2022; Chen et  al. 
2024; Manu et  al. 2024). We highlight the need for 
long-term investigation into the role of P and base 
cations in mediating root traits and plant–microbe 
interactions and their implications for root dynamics 
in tropical forests.

Fine root dynamics with N addition

Most forests along the Amazon basin grow in 
ancient soils with high N availability, as N tends 
to accumulate during soil development through 
biological fixation and atmospheric deposition 
(Hedin et  al. 2003). As predicted, no significant 
changes in fine root dynamics were expected with 
the addition of N, despite a potential trend towards 
reduced turnover in year 2. Therefore, adding N to an 
already N-rich system did not prompt any significant 
changes in fine roots, at least in the short term. 
However, the observed trend of reduced turnover 
in year 2 suggests that, over time, N addition may 
gradually influence root longevity. Although these 
effects were not statistically significant within our 
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study period, they could become more pronounced 
with prolonged N enrichment. Furthermore, the 
significant interaction between N and base cations 
in year 2 suggests that these two nutrients added 
separately or in combination result in 30% lower 
root turnover rates compared to when neither N nor 
base cations are added. Such changes could have 
more pronounced long-term impacts on belowground 
C dynamics, directly by altering root traits and 
biomass or indirectly through mechanisms such as 
shifts in soil pH. Since base cations can help buffer 
the potential soil acidification caused by N addition, 
changes in pH may influence nutrient availability and 
soil microbial communities, affecting plant efficiency 
in resource acquisition and ecological interactions 
(Wright 2019; Luo et  al. 2022). However, without 
further information on changes in soil properties 
and functional expression of root traits, we cannot 
fully interpret the ecological significance of such 
intricate interactions. Long-term studies are essential 
to determine whether this trend marks the onset of a 
more substantial shift in root turnover dynamics and 
what it could mean for C and nutrient cycling in this 
system.

Conclusion

Over the two-year experiment, fine roots responded 
to increased availability of rock-derived nutrients, 
particularly P. The addition of P significantly 
accelerated fine root turnover, whereas cation addition 
extended root lifespan. Notably, the addition of base 
cations mitigated the effects of P, and, to a lesser 
extent, mediated the effects of N addition. These 
contrasting responses between P and base cations 
underscore their distinct soil mobility, roles in plant 
function, and contributions to nutrient uptake and 
utilisation strategies. Such shifts in fine root dynamics 
may have far-reaching implications for whole-plant 
C use efficiency and, consequently, for soil and 
ecosystem-wide C residence times over the long 
term. Our findings highlight that nutrient availability 
plays a crucial role in regulating fine root dynamics 
and C cycling, offering critical insights into how 
soil nutrient limitations could shape the response of 
Amazon forests to global environmental changes. It is 
worth noting that the observed responses may partly 
reflect short-term adjustments to an abrupt increase 

in nutrient availability, particularly at levels so much 
higher than seasonal flushes of nutrients common 
at the onset of the wet season in naturally nutrient-
poor tropical forest soils. Long-term investigation is 
required to determine whether these changes persist 
or represent transient plasticity in root functions. 
These initial insights into belowground dynamics 
open numerous pathways for future research to 
investigate the influence of nutrient availability on 
morphological and physiological root traits, as well as 
plant-soil interactions.
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