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Abstract
Habitat disturbance affects, directly or indirectly, the predation risk and food available to 
animals. One group of animals that may be negatively affected by habitat disturbance are 
forest-dependent aerial insectivorous bats, especially in the Amazon rainforest, where for-
est clearance and degradation continue unabated. However, we still have a limited under-
standing of the mechanisms underlying the negative effect of habitat disturbance on forest 
aerial insectivorous bats. Evaluating the changes in prey-predator interaction in disturbed 
habitats can provide helpful information for protected area management. We evaluated how 
predation risk, insect biomass, and moonlight intensity affect bat activity levels in con-
tinuous primary and disturbed forests (fragments and secondary forest) at the Biological 
Dynamics of Forest Fragments Project, Central Amazon, Brazil. We sampled bats using 
autonomous ultrasound recorders in continuous forest, forest fragments, and secondary for-
est. To assess insect biomass, we placed malaise traps close to the recorders and conducted 
a playback experiment consisting of owl calls to assess the influence of increased predation 
risk by natural predators on bat activity. We found that continuous forest had higher bat 
activity than fragments and secondary forest, probably reflecting higher insect biomass in 
continuous primary forest compared to secondary forest. Insect biomass was the best pre-
dictor of activity in disturbed habitats compared to predation risk and moonlight. Predation 
risk did not modulate bat activity in any habitat type. The effect of moonlight intensity on 
activity was only apparent in three species in different habitats. Our results suggest that 
these responses were related to the abundance of specific insect orders and not predation 
risk. Overall, our findings emphasize the importance of evaluating the effects of prey-pred-
ator interactions on the distribution of bats in disturbed tropical forests, as habitat distur-
bance can negatively affect lower trophic levels and consequently influence not only bats 
but other insect consumers.
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Introduction

Prey-predator interactions involve minimizing exposure to predators and maximizing feed-
ing efficiency (Lima 1985; Pyke 2010). Antipredator decisions by prey can involve preda-
tor behavior and prey behavior. Predators are categorized as either ambush predators (i.e., 
sit-and-wait strategy) or cursorial predators (i.e., active hunting strategy) (Gable et  al. 
2021; Schmitz 2008). Prey can flee from ambush predators (i.e., evasion) or hide from cur-
sorial predators (using cover, crypsis, or freezing) (Sih et al. 1998; Wirsing et al. 2010). 
For prey species that use cover to reduce exposure to a predator, environmental variables 
such as vegetation density and habitat quality can be key factors determining habitat use 
(Lima and Dill 1990; Massé and Côté 2009). High vegetation density can limit prey vis-
ibility for predators that use vision to forage, and prey also find more places to hide (Lima 
and Dill 1990; Riginos and Grace 2008). Moreover, lower-quality habitats can increase 
the predation risk for prey, resulting in altered foraging patterns or behaviorally-mediated 
trophic cascades (Palmer et al. 2022). Thus, heterogeneous landscapes can create different 
situations of fear and forage (Kotler and Brown 1999), but, intuitively, lower-quality habi-
tats can negatively affect predators and prey compared to higher-quality habitats.

Lower-quality habitats may originate from human activities, such as deforestation, frag-
mentation, and forest degradation, which are increasing across the tropics. One of these 
human-disturbed habitats is secondary regenerating forest, which is rapidly expanding in 
the Brazilian Amazon, amounting to an area of 180,215 km2 (Smith et  al. 2021). These 
disturbed habitats differ from preserved habitats in a range of characteristics, such as veg-
etation structure and abiotic and biotic conditions, which can alter prey availability and 
foraging opportunities for predators (Haddad et  al. 2015; Michalko et  al. 2021). Indeed, 
degraded forests, including tropical regenerating forests have lower biodiversity than pri-
mary forests (Gibson et al. 2011), consequently affecting the availability of different prey 
species for forest predators. Small forest fragments surrounded by a low-contrast matrix, 
for example, can suffer from edge effects, including reduced forest cover, which exposes 
prey species to greater predation risk relative to that experienced in larger fragments and 
continuous primary forest (Morrison et  al. 2010; Tufto et  al. 1996). The abundance and 
biomass of moths are positively and strongly related to local plant diversity and vegetation 
complexity (Alonso-Rodríguez et al. 2017; Hawes et al. 2009), which can directly affect 
insectivorous animals such as forest-dwelling insectivorous bats (Froidevaux et al. 2021).

Aerial insectivorous bats are crucial to providing ecosystem services such as the sup-
pression of agricultural pests and mosquitos that transmit diseases (Puig-Montserrat 
et al. 2020; Montauban et al. 2021). Forest-dwelling bat species are highly dependent on 
complex vegetation, providing adequate opportunities for roosting and foraging (López-
Baucells et al. 2022). Most aerial insectivorous bats respond negatively to habitat distur-
bance, showing curtailed activity in disturbed habitats (Jung and Kalko 2010; Estrada-Vil-
legas et al. 2010;  Falcão et al. 2021). In the Central Amazon, the activity of some forest 
insectivorous species can decrease in fragments and secondary regenerating forest (Appel 
et al. 2021; Rowley 2022). The mechanisms that explain this reduction in aerial insectivo-
rous bat activity in disturbed forest habitats may be related to changes in abiotic conditions, 
prey-predator interactions, roost availability, and mating opportunities (Kingston 2013; 
Arrizabalaga-Escudero et al. 2015).

Moonlight intensity, predation risk, and insect availability, directly and indirectly, 
influence the foraging activity of tropical bats (Saldaña-Vásquez and Munguía-Rosas 
2013). In forest fragments, aerial insectivorous bats are less active on extremely bright 
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nights than dark nights, probably due to higher vulnerability to predators when tra-
versing the matrix (Appel et al. 2021). Observational evidence indicates that presence 
of diurnal predators at the entrance of bat roosts can affect the timing of emergence 
(Welbergen 2006) and the number of bats that emerge (Kalcounis and Brigham 1994). 
However, the behavioural responses of bats to perceived nocturnal predation risk while 
foraging are still unclear, especially for tropical species (Lima and O’Keefe 2013). 
Only one study tested the risk of owls for frugivorous bats in the tropics, showing that 
bats decreased their foraging activity in fruit trees when stimulated by visual cues of 
owls (Breviglieri et al. 2013). For tropical aerial insectivorous bat species, which rely 
less on vision to hunt than frugivores and nectarivores, assessing the effect of vocal-
izing predators on activity is essential to understand habitat selection in undisturbed 
and disturbed habitats. Moreover, many studies suggest that insectivorous bats con-
centrate their activity during periods when insects are most abundant (Speakman et al. 
2000; Meyer et al. 2004; Oliveira et al. 2015). Habitats with different vegetation cover 
and disturbance may affect the trophic interaction between bats and their prey through 
reduced insect availability (Treitler et  al. 2016) and can provide useful information 
about the management of disturbed forests to promote bat activity.

In this study, we evaluated how human-modified landscapes influence the activ-
ity of seven aerial insectivorous bat species in relation to food availability, predation 
risk, and moonlight intensity. We acoustically quantified bat activity in the disturbed 
landscape of the Biological Dynamics of Forest Fragments Project (BDFFP) in the 
Brazilian Amazon, specifically in continuous forest (control) and in disturbed habitats 
(forest fragments and secondary forest) to examine variation in species-level activity. 
Playback experiments in each habitat type were conducted to determine the effect of 
perceived predation risk on bat activity. To assess food availability, we sampled aerial 
insects in the vicinity of the acoustic recorders in each habitat type and determined 
their biomass. We also considered moonlight intensity as a factor influencing the for-
aging behaviour of bats in each habitat type (Appel et al. 2021). Our general hypoth-
esis was that the activity of aerial insectivorous bats would be highest in continuous 
primary forest and lower in disturbed habitats due to the higher predation risk and 
reduced insect biomass (Hallmann et al. 2017). Thus, across the disturbed landscape, 
we tested the following predictions:

(1)	 We anticipated that most aerial insectivorous bat species would respond to insect bio-
mass rather than predation risk in continuous forest. By contrast, in disturbed habitats 
(fragments and secondary forest), most aerial insectivorous bat species would respond 
to predation risk more than insect biomass. These responses would reflect the higher 
insect biomass across the continuous forest and the greater exposure to predators in 
disturbed habitats due to the altered forest structure.

(2)	 We expected that the interaction of moonlight intensity with insect biomass and preda-
tion risk would not affect bat activity in continuous forest, where habitat quality and 
insect biomass are assumed to be higher than in disturbed habitats (Uhler et al. 2021). 
For the disturbed habitats, we predicted that most bat species would be negatively 
affected by moonlight intensity and predation risk (Appel et al. 2021).

(3)	 We predicted that the hourly activity of bat species would be affected by predation risk 
in fragments and secondary forest.
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Material and methods

Study site

The study was conducted at the Biological Dynamics of Forest Fragments Project 
(BDFFP) (2°25′S; 59°50′W), located ~ 80 km north of Manaus, Brazil (Fig. S1), one of 
the world’s most extensive and longest-running experimental investigations of habitat 
fragmentation and forest regeneration (Laurance et al. 2018). Located in Central Ama-
zonia, the area contains lowland evergreen terra firme rainforest at 50 to 100 m of eleva-
tion (Laurance and Williamson 2001). The study area includes 11 forest fragments (five 
of 1 ha, four of 10 ha, and two of 100 ha), surrounded mainly by a matrix of secondary 
forest in an advanced stage of regeneration and significant extensions of continuous for-
est that act as experimental controls (Laurance et al. 2018). Periodically, the fragments 
are re-isolated by clearing the forest up to 100  m around the fragments; the last re-
isolation took place in 2014 (Rocha et al. 2017). The secondary forest is dominated by 
Cecropia spp. in areas that were only cleared and by Vismia spp. in areas where forest 
was removed, burned, and used for pasture before abandonment (Mesquita et al. 2001). 
The dry season typically lasts from July to November when precipitation is less than 
100 mm/month and, the rainy season occurs from November to June, when precipita-
tion can reach 300 mm/month (Ferreira et al. 2017). We estimated canopy cover using 
a spherical densiometer (Model C, Robert E. Lemmon, USA). In each habitat type, 
four readings were taken and we found that canopy cover varies little between habitat 
types (continuous forest interior: 91.5 ± 1.32 [mean ± SD]; fragments of 10 ha interior: 
89.7 ± 0.55; secondary forest: 86.7 ± 2.82). Canopy height in the large fragments and 
continuous forest averages 28 m (Almeida et al. 2019), while in the well-developed sec-
ondary forest the average canopy height is 15  m (Jakovac et  al. 2014; Mokross et  al. 
2018). In view of the limited variation in canopy cover, we assumed that moonlight pen-
etrates into the forest similarly in all habitats.

Bat acoustic sampling and bat identification

We sampled at nine sites across the BDFFP landscape: three sites in continuous forest 
(Cabo Frio, Florestal and Km 41 camps), three 10 ha fragments (Porto Alegre, Colosso and 
Dimona camps) and three sites in secondary forest (Porto Alegre, Cabo Frio and Dimona 
camps) (Fig. S1). Each site was visited twice in each season (dry season of 2018 and rainy 
season of 2019) and the number of sampling nights varied between 18 and 30 per season in 
each habitat type (Tab. S1). We positioned one passive ultrasound recorder in the center of 
the fragments, in the secondary forest at least 500 m away from the edge of a fragment or 
continuous forest, and in the interior of continuous forest 1000 m away from the edge. At 
each site, we installed an automatic ultrasound recorder (Song Meter SM2Bat +) with an 
omnidirectional ultrasonic SMX-US microphone (Wildlife Acoustics, Inc., USA) placed at 
a height of 1.5 m above the ground. The recorders were programmed to passively register 
bat activity in real time, with a full spectrum resolution of 16 bit, a high-pass filter set at 
fs/32 (12 kHz), and an adaptive trigger level relative to noise floor of 18 SNR. Bat activity 
was recorded between 17:30 and 06:30 for two to four consecutive nights per visit, totalling 
at least 40 nights per sampling site (Tab. S2). We recorded for 138 nights, totalling 1794 
recording hours.
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Each night’s recordings were split into five-second long segments using Kaleidoscope 
software (Wildlife Acoustics, Inc., USA) and we defined a bat pass as a five-second seg-
ment with at least two recognizable search-phase calls per species (Appel et  al. 2019; 
Gomes et al. 2020). We manually identified the bat passes to species level or sonotype level 
when it was impossible to assign the call to a particular species. Identification followed 
the acoustic key in López-Baucells et al. (2016). For manual identification of each record-
ing, we used Kaleidoscope software (version 4.0.4). We calculated bat activity as the sum 
of five-second segments with bat passes per night (nightly activity) and per hour (hourly 
activity).

We identified ~ 39,800 bat passes of 13 aerial insectivorous bat species and 10 sono-
types. To minimize potential detection biases we focused on species that were detected in 
at least 45% (63 nights) of the total number of recording nights. Thus, we selected seven 
species for analysis: Pteronotus alitonus, P. rubiginosus (revised by Pavan et  al. 2018), 
Centronycteris maximiliani, Cormura brevirostris, Saccopteryx bilineata, S. leptura and 
Peropteryx kappleri (Table S3).

Predator call experiment

To test if predation risk influences the activity of aerial insectivorous bats, we performed 
playback experiments with three treatments at all sites: (a) playback of owl species calls; 
(b) broadcasting noise treatment; (c) without owl calls or noise (control treatment). Each 
night of acoustic sampling, we ran one of the treatments, maintaining an order that did not 
repeat the treatment of the previous night. Owl calls and noise sound were played using 
a JBL (Clip 2) speaker connected to a portable battery and a cell phone that contained 
one playlist. The speaker was installed five meters away from the ultrasound recorder at a 
height of 1.5 m above ground level. Predator and noise treatments lasted for the same dura-
tion of the deployment of the ultrasound recorder (17:30 to 06:30) and were broadcasted 
every 15 min for a duration of one minute. This temporal vocal activity pattern of owls 
agrees with that observed for owl species at the BDFFP (Bonamoni et al., personal com-
munication). Indeed, we used a different playlist order of owl species calls to avoid repeti-
tion of the same playlist from the previous night. We used noise treatment to validate the 
treatment of owl calls, if bats respond to noise this means that a possible response to the 
owl calls is not validated. We had at least 11 nights for each treatment in each habitat type 
(Tab. S2).

For the treatment of owl calls, we selected the following species that were reported to 
prey on bats and that were previously registered at the BDFFP (Bonamoni 2013): Lophos-
trix cristata, Megascops watsonii, Strix huhula, Strix virgata and Pulsatrix perspecillata 
(Almeida et al. 2021; Cadena-Ortiz et al. 2013; Carvalho et al. 2011; Rocha and López-
Baucells 2014; Serra-Gonçalves et al. 2017). Owl calls were obtained from the Xeno-canto 
website (https://​xeno-​canto.​org/), which is an open bird song repository. The owls’ vocali-
zation frequency range (8–20 kHz) was within the hearing capacity of the bat species eval-
uated here (Pteronotus: 10–112 kHz, Kössl and Vater 1996; emballonurid species such as 
S. bilineata and S. leptura: 5–100 kHz, Lattemkamp et al. 2021). We used a broadcasting 
noise in the noise treatments that contains all frequencies across the spectrum of audible 
sound in equal measure ranging between 0 and 8268.8 kHz. This noise was obtained from 
the SimplyNoise website (https://​simpl​ynoise.​com/). This broadcasting noise has been used 
in studies which tested the influence of noise on animal activity (Medeiros et al. 2017).

https://xeno-canto.org/
https://simplynoise.com/
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Nocturnal insect sampling

Nocturnal flying insects (hereafter insects) were sampled at each site alongside acoustic 
sampling of bats and predator experiments. To avoid possible biases associated with the 
use of light traps while recording bats (Froidevaux et al. 2018), we used Malaise traps to 
capture insects (1.60  m height × 1.50  m length). These traps collect a great variety and 
abundance of insects eaten by bats such as Diptera, Coleoptera, Lepidoptera, Hymenop-
tera, Hemiptera and Orthoptera (Table  S4). We installed four malaise traps around the 
ultrasound recorder whereby each malaise trap was placed 20 m from the recorder in the 
four cardinal directions (Fig. S2). To collect only nocturnal insects, we installed the traps 
before sunset (17:30) and took them down at sunrise (06:00).

Insects were preserved in bottles containing 90% alcohol, which were labeled and taken 
to the Animal Biology Laboratory of the Federal University of Amazonas (UFAM) for 
sorting and identification. Species identifications were made by UFAM and National Insti-
tute for Amazonian Research (INPA) entomologists and identified to order level based on 
identification keys by Rafael et al. (2012). For each insect order, we counted the number of 
individuals and weighed them to estimate the total biomass of insects per night. To remove 
excess alcohol from the insects, we dried them with filter paper and weighed each insect on 
a precision balance (precision limit 0.0001 g; Ohaus Discovery, Pine Brook, New Jersey). 
We estimated the average insect biomass per night by dividing the mass by the number of 
insects collected (Oliveira et al. 2015).

Moonlight intensity

Moonlight intensity for each night was calculated using the “sunmoon” software (Kyba 
et al. 2020), a robust method for quantifying the amount of sunlight reflected by the moon. 
This software employs the illuminance model proposed by Janiczek and DeYoung (1987). 
We used the percentage of moonlight intensity instead of the moon phase because moon-
light luminosity varies greatly within the same moon phase (Appel et al. 2017, 2021). At 
each site and for each treatment, we sampled nights with different percentages of moon-
light intensity to cover the whole gradient in variation of moonlight intensity (0–100%).

Data analysis

To assess if bat activity levels and insect biomass vary between habitat types, we tested 
the effect of habitat type (continuous, fragment and secondary forest) on total and spe-
cies-specific bat activity levels and insect biomass. For the bats, we performed general-
ized linear mixed models (GLMMs) in the R package “glmmTMB” (Bolker et al. 2020) 
and the response variable was the number of bat passes per night, for  all species com-
bined and per species. Models were fitted using a negative binomial distribution and we 
used zero-inflated models when the species distribution showed a signal of zero inflation 
(Zuur et al. 2009). To account for the temporal autocorrelation in the data, habitat type was 
the categorical fixed effect and, we used sampling night nested within research camp as 
a random effect. To compare activity levels between fragments and secondary forest, we 
evaluated these differences using least-squares means (predicted marginal means) analysis 
with the “lsmeans” package (Lenth 2016). For insect biomass, we tested the influence of 
habitat type on insect biomass using Gardner-Altman estimation plots and evaluated sta-
tistical differences using non-parametric permutation tests with 1000 bootstrap samples to 
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estimate effect sizes and 95% confidence intervals for the difference of means with the 
package “dabestr” (Ho et al. 2019). The statistical significance of differences in insect bio-
mass between habitat types was inferred based on the lack of overlap in the frequency dis-
tributions of the data.

As bat activity levels and insect biomass vary between habitat types, we performed 
GLMMs for each bat species and total bat activity in each habitat type. We conducted 
these analyses rather than putting all the variables (including habitat type) into one model, 
because we chose to understand what are the variables that drive bat activity in each habitat 
type and to avoid overparameterization and collinearity of models with many interactions 
(Grueber et al. 2011). To test the effects of insect biomass and owl calls on bat activity in 
each habitat, we also performed GLMMs using “glmmTMB”. First, we made a model test-
ing the additive effects of insect biomass and playback treatment (control, noise, and owl 
call) on bat activity levels. Second, we tested the additive effects of insect biomass and 
moonlight intensity and their interaction effect on bat activity levels. The predictors (insect 
biomass and moonlight intensity) of this second model were standardized to a mean of 0 
and an SD of 1 to facilitate comparison of their relative effects. Third, we made a model 
with the additive effects of playback treatment and moonlight intensity, and their interac-
tion effect on bat activity. In the third model, we did not standardize the predictors due to 
the categorical predictor of playback treatment. For all models, we used sampling night 
nested within the research camp as a random effect to account for the temporal autocor-
relation in the data and a negative-binomial distribution for the response variables. For the 
analysis of species that included insects as a predictor, we used only the insect orders that 
each bat species consumes according to the literature (Tab. S5). The residuals of all models 
were checked using the "DHARMa" package (Hartig 2022) and we tested overdispersion 
and zero inflation with the same package.

Differences in hourly activity between owl call playback treatment and control treat-
ment for each habitat type were assessed using Kolmogorov–Smirnov 2-sample tests. Bat 
activity of each species was divided into 12 intervals (hourly intervals). For comparisons 
between these two treatments, we used data from 36 nights in continuous forest (17 nights 
of owl calls, 19 of control), 30 nights in fragments (13 nights of owl calls, 17 of control), 
and 30 nights in secondary forest (15 nights of owl calls, 15 of control). All analyses were 
performed in the software R 4.02. and R Studio 4.0.2 (R Core Team 2021; Rstudio Team 
2021).

Results

Effects of habitat type on bat activity and nocturnal insect biomass

Total bat activity was higher in continuous forest compared to disturbed habitats 
(Fig.  1), with activity levels being 2.06 and 1.84 times higher in continuous forest 
compared to fragments and secondary forest, respectively (Tab. S3). The most nega-
tive effects on species-specific activity responses were observed in the fragments. The 
activity of two species (C. maximiliani and C. brevirostris) was lower in fragments than 
continuous forest (Fig. 1). Only P. rubiginosus activity was lower in secondary forest 
than continuous forest, in contrast to P. alitonus and P. kappleri which showed higher 
activity in secondary forest than continuous forest (Fig. 1). When comparing fragments 
with secondary forest, four species (P. alitonus, C. maximiliani, C. brevirostris and P. 
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kappleri) had higher activity in secondary forest while only P. rubiginosus had higher 
activity in fragments (Tab. S6).

We sampled a total of 46,401 nocturnal insects and Diptera represented 61.7% of all 
sampled individuals, followed by Hymenoptera with 17.13%, Collembola with 9.2%, 
and Lepidoptera with 3.7% (Tab. S4). The remaining orders (e.g., Hemiptera, Coleop-
tera, Orthoptera, Isoptera, Blattodea, Trichoptera) accounted for 9% of total insects. 
Nocturnal insect biomass (based on insect orders relevant to the diet of most bat spe-
cies; P. alitonus, P. rubiginosus, S. bilineata, C. maximiliani, C. brevirostris and P. 
kappleri) in secondary forest was on average 3.1 times lower than in continuous forest 
(Fig.  2). No differences in insect biomass were found between continuous forest and 
fragments (Fig. 2; Tab. S7). On the other hand, the biomass of insects featuring in the 
diets of S. bilineata, C. maximiliani, and P. kappleri was on average two times lower in 
the secondary forest compared to fragments (Fig. 2).

Effects of insect biomass and owl call playback on bat activity in each habitat type

We found a positive relationship between activity of four species (P. alitonus, P. rubigi-
nosus, S. bilineata and C. brevirostris) and insect biomass in continuous forest (Fig. 3A). 
Conversely, in secondary forest, total bat activity and activity of P. alitonus were negatively 
related to insect biomass (Fig. 3A). We did not find any influence of owl call playback on 
bat activity in any habitat, except for P. kappleri which responded negatively to the owl 
calls, but also to noise, indicating that this species is affected by any type of sound, not 
necessarily the predator call (Fig. 3A). We also did not find any relationship between insect 
biomass and owl call with bat activity in the fragments (Fig. 3A).

Effects of moonlight intensity, insect biomass, and owl call playback on bat activity

Only three bat species responded to moonlight intensity when we included insect biomass in 
the GLMM models (Fig. 3B). In continuous forest, only C. maximiliani was less active during 
brighter nights with greater insect biomass (Fig. 3B). In fragments, P. alitonus reduced activ-
ity with increasing moonlight intensity and P. kappleri was more active during brighter nights 
with greater insect biomass (Fig. 3B). In secondary forest, only P. rubiginosus was less active 
on brighter nights with lower insect biomass (Fig. 3B).

There were no significant effects of moonlight and owl call playback on bat activity in any 
habitat (Fig. 3C). The only significant result (P. rubiginosus in secondary forest) was associ-
ated with noise and therefore not considered (Fig. 3C).

Effects of owl call playback on hourly bat activity in each habitat type

In continuous and secondary forest, bat activity for all species combined was significantly 
greater during nights without owl calls than those with owl call playback, particularly in the 
early evening (Fig. 4). However, at the species level, hourly activity did not differ between 
nights with owl calls and control nights, irrespective of habitat type (Fig. 4).
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Discussion

At the BDFFP, there is growing research into understanding how forest disturbance affects 
the functional, taxonomic, and behavioral responses of aerial insectivorous bats (López-
Baucells et al. 2019, 2021, 2022; Meyer et al. 2016; Núñez et al. 2019; Yoh et al. 2022). 
Several studies have shown that some Amazonian aerial insectivorous bats are particularly 
vulnerable to habitat disturbance and fragmentation, especially understory forest special-
ists (Appel et al. 2021; Núnez et al. 2019; Colombo et al. 2022; Yoh et al. 2022). How-
ever, the mechanisms that explain why these species are sensitive to habitat disturbance are 
unknown. Our results indicate that predation risk does not modulate the activity of under-
story aerial insectivorous bats in disturbed habitats and that the higher activity in continu-
ous forest is related to higher insect biomass. We also found that moonlight does not inten-
sify the predation risk effect and does not interfere with insect consumption in preserved 
and disturbed habitats.

In agreement with our predictions, the total activity of aerial insectivorous bat species 
was negatively affected by habitat disturbance. Our results suggest that total activity in dis-
turbed habitats (fragments and secondary forest) is half that observed in continuous forest. 

Fig. 1   Comparison of the activity of each bat species between continuous forest (green boxes), fragments 
(yellow) and secondary forest (orange) at the BDFFP. Significant comparisons (P ≤ 0.05) are indicated with 
‘*’
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The reduced activity in human-disturbed habitats especially for forest-dependent aerial 
insectivorous species has commonly been reported (Estrada-Villegas et  al. 2010; Falcão 
et al. 2021; Meyer et al. 2016), and this might be caused by a decrease in resources, such 
as roosts, food and safe environments for foraging (Bernard and Fenton 2002; Evelyn et al. 
2004; Pereira et  al. 2018). As we found, insect biomass was higher in continuous forest 
than secondary forest but is similar in fragments and continuous forest. Thus, greater avail-
ability of insects in continuous forest probably creates better foraging opportunities for 
aerial insectivorous bats, as has been reported in other studies (Oliveira et al. 2015; Ketzler 
et  al. 2018; Put et  al. 2018; Scanlon and Petit 2008). This difference in insect biomass 
between continuous forest and secondary forest likely reflects differences in plant species 
composition (Alonso-Rodríguez et al. 2017; Hawes et al. 2009). Herbivorous insects often 
consume specific plant genera or species (Haddad et al. 2009), so well-preserved habitats 
commonly have higher diversity and biomass of vegetation-associated insects (Ebeling 
et al. 2019; Welti and Kaspari 2020). Secondary forests dominated by Vismia have lower 
plant diversity than continuous forest (Jokovac et al. 2014) and consequently, insects are 
probably less diverse and may have lower dry body mass (Salomão et al. 2018).

Fragments had more species with negative activity responses than secondary forest, and 
five species had lower activity in fragments than secondary forest. This result is different 
from what we expected, because based on intensive acoustic sampling conducted at the 
BDFFP between 2011 and 2013 we showed that most aerial insectivorous species were 
less active in secondary forest (Appel et al. 2021). This was probably due to the reisola-
tion of the fragments in 2014 (Rocha et  al. 2017). The acoustic sampling of the present 
study (2018–2019) was done in fragments surrounded by a secondary forest at an early 
stage of regeneration compared to 30 years of matrix regeneration in the previous study 
(Appel et al. 2021; López-Baucells et al. 2022). Fragment reisolation thus had substantial 
negative effects on total activity of aerial insectivores, even after just four years of forest 
regeneration.

Our findings suggest that insectivorous bats exhibit species- and guild-specific responses 
to forest disturbance. Such responses may be affected by their foraging strategy, wing 
morphology, echolocation call structure and forest strata preference (Alpízar et al. 2019; 
Gomes et al. 2020; Colombo et al. 2022). Pteronotus alitonus was clearly more active in 
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Fig. 2   Comparison of the aerial insect biomass (g) per bat species diet between continuous forest (green 
dots), fragments (yellow) and secondary forest (orange) at the BDFFP. Significant comparisons (P ≤ 0.05) 
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secondary forest than in continuous forest  and fragments. This species has intermediate 
values of aspect ratio and wing loading, showing a flexible and adaptable flight (Marinello 
and Bernard 2014) and at the BDFFP is known as a species with no preference for any 
habitat type or fragment size (Rowley 2022; Yoh et al. 2022). Peropteryx kappleri also had 
increased activity in secondary forest, and this is probably related to its strategy of being 
an edge forager and its canopy preference (Gomes et al. 2020; Yoh et al. 2022). Secondary 
forests at the BDFFP are less tall than continuous forest (< 15 m), so vertical stratifica-
tion is less pronounced and possibly this is why the recorders in these regenerating forests 
detected more of this aerial insectivorous species.

As we expected, most aerial insectivorous bat species responded to insect biomass 
rather than predation risk in continuous forest. Bat species can maximize the energy gain 
with higher insect biomass and minimize exposure with the protective cover of continu-
ous forest, therefore the benefits outweighed the risk of predation (Jung and Kalko 2010; 
Rydell et al. 1996). However, contrary to our expectations, predation risk did not affect bat 
activity responses in disturbed habitats. Our results indicate that owl calls do not alter aer-
ial insectivorous bat activity in any habitat type. A lack of response of bats to owl calls was 
also found for temperate species (Janos and Root 2014) and for neotropical frugivorous 
species (Breviglieri et al. 2013). There are several possible reasons for this: (1) Owls use 
their vision to hunt, and they cannot hear ultrasound calls emitted by bats as the upper limit 
of hearing frequency of owls is between 7 and 18 kHz (Beason 2004; Konishi 1973). Thus, 
the perception and pursuit of prey by owls in dense vegetation can be hampered (Apolloni 
et al. 2018). The response of bats to owls presumably might be higher in open areas such as 
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pastures and agricultural lands. (2) Bats probably perceived the owl calls as nonthreaten-
ing nocturnal noise in forested sites (Janos and Root 2014) as the vocal activity of owls is 
not associated with hunting, but with territorial advertising and mate attraction (Penteriani 
and Delgado 2009); (3) The acoustic stimulus is not strong enough to trigger anti-predator 
responses in bats compared to other stimuli such as visual cues, odor, movement and vocal-
ization of an attacked bat (Breviglieri et al. 2013; Fenton et al. 1994). We only used owl 
calls as predation risk stimulus and we evaluated only the changes in activity as antipreda-
tor response of bats, thus further investigation is needed to test other stimuli (Baxter et al. 
2006), predators, and different response measures of bats such as changes in the timing of 
emergence from roosts (Petrzelkova and Zukal 2003) and mobbing behavior as antipreda-
tor adaptation (Knörnschild and Tschapka 2012).

Our results also show that variation in moonlight intensity has a weak effect on bat 
activity and does not suppress the activity of most bat species in disturbed habitats. Our 
previous study showed that variation in moonlight intensity between nights affects aerial 
insectivorous bat activity in disturbed habitats very little (Appel et al. 2021). However, in 
the present study, three bat species responded to moonlight in association with insect bio-
mass, but no species responded to moonlight associated with predation risk. These results 
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suggest that insect availability may indirectly influence the activity of some aerial insec-
tivorous species on nights with different moonlight intensities (Lang et  al. 2006). Insect 
orders eaten by P. alitonus and P. rubiginosus decrease with moonlight in fragments and 
secondary forest (linear regression analysis: estimate = −  0.002; t = −  5.24; P < 0.0001 
for fragments, and estimate = −  0.002; t = −  6.47; P < 0.0001 for secondary forest). By 
contrast, Lepidoptera were more abundant at greater moonlight intensities in fragments, 
which could explain the higher activity of P. kappleri on bright nights in fragments (esti-
mate = 0.006; t = 4.18; P < 0.001). For C. maximiliani, we found no statistical effect of 
moonlight for the insect orders consumed by this species (Lepidoptera and Coleoptera; 
estimate = 0.001; t = 1.17; P < 0.65), and maybe this reflects the lack of knowledge about 
other insects that C. maximiliani eats since we only found two studies (Starrett and Case-
beer 1968; Woodman 2003).

We found a reduction of hourly total activity on nights with owl calls in continuous and 
secondary forests. In continuous forest, total bat activity was lower at the beginning of the 
night and 2 and 3 pm on nights with owl calls compared to control nights. In secondary 
forest, total bat activity on nights with owl calls was also slightly reduced the whole night 
compared to control nights. This provides some evidence that tropical aerial insectivorous 
bats may change activity in response to predation risk for short periods throughout the 
night. Some bat species tend to emerge later when predators are present (Russo et al. 2011; 
Welbergen 2006). Bats need to feed at the beginning of the night to meet their energetic 
demands, but when predation risk is high, they can adjust and distribute their activity over 
the course of the night, especially gleaning insectivorous species whose food is evenly dis-
tributed over the night (Kalko et al. 1999; Weinbeer and Kalko 2004). However, we did not 
find a species-specific response, indicating that the activity at the assemblage level often 
does not correspond to the activity of the species that compose it.

Despite species-specific differences, in general, total bat activity was higher in continu-
ous forest compared to disturbed habitats, likely a consequence of the higher insect biomass 
of continuous forests. The effects of habitat disturbance on aerial insectivorous bat activity 
appeared to be more related to insect biomass than predation risk and moonlight. There-
fore, the regeneration of the matrix probably will increase available insect biomass and 
consequently bat activity over time. Nonetheless, we should strongly prioritize areas that 
constitute hotspots of nocturnal insect biomass as protected reserves for bat conservation, 
since changes in insect biomass may have cascading effects on bat activity (Froidevaux 
et al. 2021). Many birds and other vertebrates are linked to the prey of insectivorous bats, 
so the conservation of these foraging habitats ensures the nocturnal trophic structure is pre-
served (Arrizabalaga-Escudero et al. 2015). Other characteristics such as vegetation struc-
ture, terrain elevation, forest composition, weather conditions, and roost quality can shape 
bat activity (Barros et al. 2014; Meyer et al. 2004; Russo et al. 2016; Cabral et al. 2023) in 
disturbed habitats, and need to be considered in further investigations to better understand 
the local needs of bats.

Finally, our study highlighted the importance of continuous primary forest for forest 
aerial insectivorous bat species and to preserve their ecological functions, such as insect 
suppression. Aerial insectivorous bats from the Brazilian savanna consume a significantly 
greater number of pest insects than of other functional groups (e.g., pollinators, predators, 
parasitoids) (Aguiar et al. 2021). According to our literature review, there are no studies on 
the diet of aerial insectivorous bats in the Brazilian Amazon, so we recommend that future 
studies address this knowledge gap. Even in a  low-contrast matrix landscape such as the 
BDFFP, substantial changes in insect availability influence bat activity and probably the 
activity of several other insect consumers. In conclusion, conservation efforts for tropical 
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aerial insectivorous bats should concentrate on the maintenance of mosaic landscapes 
which encompass large tracts of continuous forests.
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